
Toward Survivable Intrusion-Tolerant
Open-Source SCADA

Thomas Tantillo
Department of Computer Science at Johns Hopkins University

tantillo@cs.jhu.edu

Abstract—As vital components of critical infrastructure,
SCADA systems must continue to operate correctly and at their
expected level of performance at all times. However, current
SCADA systems are vulnerable to intrusions, and even a single
compromise can cause catastrophic consequences. We present the
architecture of and initial steps toward the first intrusion-tolerant
open-source SCADA system that is survivable over the required
long system lifetimes. We perform a case study of a hypothetical
deployment on the Eastern Seaboard of the United States to
validate that our SCADA system will meet SCADA application
latency requirements.

I. INTRODUCTION

Supervisory Control and Data Acquisition (SCADA) sys-
tems form the backbone of critical infrastructure, including the
power grid and water supply systems. As vital components of
critical infrastructure, SCADA systems must operate correctly
and at their expected level of performance at all times. Modern
SCADA systems employ fault tolerance techniques to overcome
standard faults, such as hardware crashes, but cannot survive
intrusions that compromise part of the system. Compromised
SCADA system components can send malicious information to
system administrators or to remote equipment, with catastrophic
consequences such as physical equipment damage, blackouts,
and significant economic loss.

The intrusion tolerance gap exhibited by SCADA systems
stems from the fact that security against cyber attacks was not
a primary focus. Many SCADA systems were designed to run
over private networks and were assumed to be protected by
an “air gap.” Today, SCADA systems are migrating to Internet-
connected IP networks for cost-effectiveness and scalability,
but this transition makes the systems more accessible to attack.
Compounding the problem, SCADA systems are high-value
targets, can be in service for a decade or longer, and may run
legacy components that lack the latest security patches. Under
such conditions, even a well-protected SCADA system is likely
to suffer compromises over its lifetime.

Attempts at developing proprietary intrusion-tolerant
SCADA systems have not gained traction because of a lack
of incentive. Power service is a heavily-regulated industry
where the power companies closely follow the regulation
requirements and have little incentive to go beyond them. In
addition, SCADA system manufacturers have little incentive
to implement capabilities that are not demanded by power
companies. Intrusion tolerance is not currently on the regulators’
checklists and therefore there is no push to develop it from the
power companies or the SCADA manufacturers, and regulators
may even be unaware that the problem is solvable.

In our view, the work in [6] represents the state of the art
in addressing the intrusion tolerance gap. That work added
intrusion tolerance to a Siemens proprietary SCADA product,

creating a prototype that was able to operate correctly and
at its expected level of performance in the presence of a
successful intrusion. This was accomplished by running several
replicas of the SCADA Master in parallel and synchronizing
their state using Prime [1], an intrusion-tolerant replication
engine that guarantees performance under attack. However,
that approach is insufficient: the replicas are simply identical
copies of one another, and an attacker can reuse a single exploit
to compromise all replicas. Moreover, even with sufficiently
diverse replicas, given long SCADA system lifetimes, an at-
tacker will eventually be able to compromise enough replicas to
violate safety. Additionally, SCADA system components depend
on timely communication to operate correctly, which can be
disrupted by an intrusion in the underlying network. Adding
to the technical limitations, the prototype was proprietary and
was not broadly visible to regulators and power companies.

In this work, we describe our preliminary work constructing
the first survivable intrusion-tolerant open-source SCADA
system — one that continues operating correctly and at its
expected level of performance throughout its intended long
lifetime, even in the presence of successful intrusions by
malicious attackers. We choose pvbrowser [8] as our base
SCADA system because it is an open-source solution that is
used in real-world deployments for power distribution and
industrial control, providing an easier path towards adoption in
practice. We use Prime [1] as the intrusion-tolerant replication
engine because it provides performance guarantees while under
attack. In order to make Prime and the SCADA system
survivable over the system lifetime, we employ software
diversity and proactive recovery, obtaining a defense across
space and time [7], making it harder for an attacker to control
many replicas simultaneously. An attacker must compromise a
sufficient number of diverse replicas within a short period of
time to succeed. Finally, we use Spines [5] to create an intrusion-
tolerant overlay network that provides timely and reliable
communication between the SCADA system components.

Our goal is to release our survivable intrusion-tolerant
SCADA system as open source. This can impact the entire
ecosystem by making SCADA manufacturers, power companies,
and regulators aware of the need for intrusion tolerance and the
existence of solutions that they can learn from. In due time, this
may change regulatory requirements, and our ideas (or some
variations) may be implemented by SCADA manufacturers in
their own systems. Also, by working with the open source
SCADA community, we can have a direct impact by making
pvbrowser, which is used in real-world deployments for the
power grid, survivable and intrusion tolerant.

II. SYSTEM COMPONENTS

Our survivable intrusion-tolerant SCADA system builds on
several components: current SCADA systems, an intrusion-



Fig. 1. Typical SCADA System Architecture

tolerant replication engine that guarantees performance under
attack, a defense across space and time to support long system
lifetimes, and an underlying intrusion-tolerant network that
respects SCADA application latency constraints.

A. Current SCADA Systems

The architecture of current SCADA systems is shown
in Figure 1. Remote Terminal Units (RTUs), located in
substations, connect to devices within those substations and
translate signals (e.g., current, phase, voltage) into digital data
that is sent to the control center over a wide-area network.
RTUs control the devices and, for many activities, are capable
of autonomous local operation. A SCADA Master, located
in the control center, periodically polls the RTUs to obtain
their current status using industrial communication protocols.
The SCADA Master compares the collected values to pre-
determined thresholds and raises an alarm if a threshold is
crossed. The SCADA Master also issues supervisory control
commands to the RTUs (e.g., to change the value of a set
point). Control and monitoring are often implemented by two
separate processes (i.e., a supervisory control process and a data
acquisition process). A Human-Machine Interface (HMI)
queries the SCADA Master and presents the current status of
the infrastructure to the operator, in graphical form, enabling
the operator to take action.

Modern SCADA systems employ fault tolerance techniques
to overcome benign faults. The SCADA Master is often
deployed in a hot-standby configuration, where the primary
processes the collected data and communicates with the HMI
workstation and RTUs, while a backup executes exactly the
same operations but has its output suppressed. The backup is
responsible for taking over if the primary fails. Unfortunately,
the hot-standby approach is ineffective against malicious
intrusions: a malicious primary may compromise the operation
of the system but still appear to the backup as functioning
properly, preventing the backup from assuming responsibility.

SCADA Performance Requirements. SCADA applications
have stringent timeliness requirements of 100 to 200 millisec-
onds [3]. It is vital to ensure system correctness and timeliness
during both normal-case operation and while under attack.

B. Prime: Correct and Timely Operation Under Attack

Prime is an intrusion-tolerant state machine replication
engine that remains correct and makes progress despite the

Byzantine (arbitrary) behavior of a subset of the participants
(no more than f out of 3f+1). Unlike many intrusion-tolerant
state machine replication protocols that only guarantee liveness
(eventual progress), Prime guarantees good performance even
while the system is under attack. Prime bounds the delay
that can be introduced by compromised replicas by strictly
monitoring their performance against a dynamic threshold
derived from measurements of network round-trip times. This
strong latency guarantee makes Prime an excellent fit for time-
sensitive systems like SCADA. Some other intrusion-tolerant
protocols ensure good average performance under attack [2],
[9], but do not offer latency guarantees for individual operations.

C. Defense Across Space and Time

Despite its strong correctness and performance guarantees,
Prime alone is not sufficient to build a survivable SCADA
system. If the replicas are simply identical copies of one another,
then an attacker can reuse a single exploit to compromise all
replicas. Even if replicas are sufficiently diverse, given enough
time, an attacker will eventually be able to compromise more
than f replicas, violating Prime’s requirements.

Software diversity and proactive recovery, which together
provide a defense across space and time, make Prime survivable
over long system lifetimes [7]. For defense across space, we
use the MultiCompiler [4], which uses techniques such as stack
padding, no-op insertion, equivalent instruction substitution,
and function reordering to obfuscate the code layout of an
application. For defense across time, replicas are periodically
rejuvenated in round-robin fashion, forcing the attacker to
compromise f+1 replicas in a short amount of time to succeed.
Upon rejuvenation, each replica generates a new cryptographic
key and a unique diverse variant, retrieves the correct state
from the other replicas, and rejoins the system. To tolerate
f compromises and k rejuvenations simultaneously, Prime
requires a total of 3f+2k+1 replicas [10].

D. Spines: Timely Intrusion-Tolerant Overlay Network

Spines [5] is an overlay messaging toolkit that provides
intrusion-tolerant messaging while guaranteeing well-defined
delivery semantics. Spines supports both timely messaging
and reliable messaging, which are appropriate for SCADA
monitoring and control messages respectively.

III. SYSTEM ARCHITECTURE

The survivable intrusion-tolerant SCADA system architec-
ture is shown in Figure 2. Rather than use a hot-standby
approach, the architecture deploys replicas of the SCADA
Master that use Prime for synchronization. The system runs
a total of N=3f+2k+1 replicas to tolerate the simultaneous
compromise of f replicas and the simultaneous rejuvenation
of k replicas. For protection against benign failures at a
single physical location, replicas are placed in geographically
dispersed data centers. All communication in the SCADA
system uses Spines. Although the replicas are semantically
equivalent, their code is diversified (represented by different
colors), forcing an attacker to craft variant-specific attacks.
Replicas are periodically rejuvenated in round-robin fashion to
a clean state to remove potential intrusions. After rejuvenation, a
new variant is automatically generated using the MultiCompiler,



Substation 

Timely and 
Intrusion-Tolerant 
Overlay Network 

SCADA	
  Master	
  
Replica	
  1	
  

Prime	
  Server	
  
Library	
  

Human	
  
Machine	
  
Interface	
  

Prime	
  Client	
  
Library	
  

SCADA	
  Master	
  
Replica	
  2	
  

Prime	
  Server	
  
Library	
  

SCADA	
  Master	
  
Replica	
  3	
  

Prime	
  Server	
  
Library	
  

SCADA	
  Master	
  
Replica	
  N	
  

Prime	
  Server	
  
Library	
  

RTU	
   Prime	
  Client	
  
Library	
  

RTU	
  Proxy	
  

Substation 

RTU	
  Prime	
  Client	
  
Library	
  

RTU	
  Proxy	
  

Physical	
  
Equipment	
  

Physical	
  
Equipment	
  

Control Center 

… 

 Spines overlay daemon 

Additional 
Data Centers 
Hosting Replicas 

Fig. 2. Survivable Intrusion-Tolerant SCADA System Architecture

which with very high probability is diverse from all past, current
and future variants, meaning that a previously successful attack
against an old variant will not be successful against this variant
with high probability. In addition, that replica generates a new
cryptographic key, invalidating its previous key that may be
controlled by an attacker. Finally, that replica validates the
persistent application state with other replicas, and acquires a
clean copy from other replicas if necessary.

We design the architecture to support the latency needs of
SCADA systems. We target one-way latencies of no more than
100 milliseconds during normal operation and no more than
200 milliseconds while under attack. We validate this using a
case study (Section IV-A).

A. Extending Prime to Support SCADA Systems

Server-Driven Polling. Currently, Prime assumes a client-
driven mode of operation, where clients submit operations to the
replicated service. Although a subset of SCADA communication
follows this pattern (e.g., the HMI submits a query to the
SCADA Master), the majority of communication is server-
driven, where the SCADA Master periodically polls the RTUs
for their latest status in response to a reoccurring timeout.
The challenge of server-driven operation is to ensure that
the SCADA Master replicas generate identical polling request
messages. Since replicas are on different physical machines,
clocks may not be perfectly synchronized, and responding to a
local timeout may lead to state divergence. Similar to techniques
presented in proprietary research [6], we plan to extend Prime
to support logical timeouts, which expire at an agreed-upon
logical time at all correct replicas.

Prime Client Library. Non-replicated applications (e.g., the
HMI) that wish to interact with a Prime-replicated application
cannot simply send an update to or receive a message from
a single replica, since that replica may be compromised.
Instead, they must send updates to at least f+k+1 replicas
and need to wait for f+1 identical copies of a message, from
different replicas, to ensure that message is valid.1 Rather than
requiring each application to support this functionality, we
are implementing the Prime client library. The client library
forwards each application message to f+k+1 replicas and only
passes received messages to the application once it has collected
identical copies of that message from at least f+1 different

1Since at most f replicas may be compromised, the delivered message is
guaranteed to be valid because at least one of the f+1 replicas is correct.

replicas. Note that the client library will discard unauthenticated
messages and filter out well-formed but invalid ones. In the
survivable intrusion-tolerant SCADA system, the HMI and RTU
Proxy use the Prime client library for communication with the
replicated SCADA Master.

B. Extending Current SCADA Systems

RTU Proxy. Since large SCADA systems may have hundreds
or even thousands of RTUs, replicating RTUs would require
a substantial additional hardware investment. Moreover, many
legacy RTUs deployed today lack sufficient computational
power to generate and verify, in a timely manner, the digital
signatures used by Prime. As a result, rather than replicating
each RTU, we plan on implementing a generic RTU proxy
that uses the Prime client library to enable unmodified RTUs
to communicate with the replicated SCADA Master and to
ensure that RTUs only receive legitimate poll requests and
control commands. Without the RTU proxy, it is impossible
to make this guarantee, since RTUs act on any message they
receive from SCADA Masters and have no voting mechanism
to validate commands. Note that the RTU proxy does not
provide intrusion tolerance against compromised RTUs, but the
damage a compromised RTU may cause is more localized than
a SCADA Master.

IV. PRELIMINARY RESULTS

A. Latency Case Study: Eastern Seaboard Power Grid

To validate that our survivable intrusion-tolerant SCADA
system will meet SCADA application latency constraints, we
analyze the latency that would be experienced by updates in
our SCADA system. Specifically, we looked at U.S. power
grid deployments, selected the deployment with the largest
geographic diameter (approximately 300 miles), and imposed it
on the Eastern Seaboard, where we have access to several data
centers. Based on our experience designing and deploying over-
lay networks on the wide area network, this diameter equates
to approximately 5 milliseconds of latency. We validated this
estimation with measurements between three of the data centers
that we have access to on the Eastern Seaboard.

Given these approximations, communication between any
two SCADA Master replicas, which are co-located with Spines
overlay nodes in data centers, is about 5 milliseconds. In
addition, each ordering operation in Prime, which involves
several rounds of communication, experiences a total latency
of approximately 30 milliseconds. Unlike the Prime replicas,
substations (i.e., RTUs) are not located in data centers and must
connect to data centers using somewhat slower connections,
which we estimate will result in approximately 7 milliseconds
latency between a substation and its nearest data center.

The one-way path of an update originating from an RTU
proxy in a substation must reach the nearest data center, cross
the entire diameter of the overlay network (in the worst case),
and must undergo at most two Prime orderings among the
SCADA Master replicas — one ordering to agree upon the
data reported from the RTU proxy and one to agree upon
the resulting action, if any. The total latency experienced for
such an update is 7 + 5 + 30 + 30 = 72 milliseconds. This
estimate does not include time spent to perform cryptographic
operations, such as digital signatures and digest computations,



Fig. 3. pvbrowser Architecture

but the remaining 28 milliseconds of the 100 millisecond budget
are sufficient to perform these operations.

In the case of replica compromises, the one-way latency
experienced by the update can be increased by the additional
time to perform a view change to replace a compromised leader.
In a system of N=6 replicas (f=1, k=1), at most two view
changes must be performed during the lifetime of the update
to elect a non-compromised and non-rejuvenating replica as
leader. Since the number of rounds of communication in a view
change is comparable to that in orderings, each view change
results in approximately 30 milliseconds of additional latency.
Even with this additional latency, the total expected latency
of the update in the presence of replica compromises is still
within the target 200 millisecond budget.

B. Implementation Using pvbrowser

We conducted a survey of available open-source SCADA
systems to identify which one to use as a base. The metrics
used for evaluation included project maturity, availability of
RTU protocol drivers, and use in real-world systems. We dis-
covered a few candidates, but ultimately decided on pvbrowser
because of its simplicity, good documentation, large support for
RTU communication protocols, and experience in real-world
deployments, where it has been used in a power distribution
system covering approximately 10,000 square kilometers and
monitoring more than 50 power switches.

The architecture of pvbrowser is depicted in Figure 3. The
SCADA Master is implemented by two processes: the process
view server, which exercises supervisory control, and the data
acquisition daemon, which communicates with RTUs. A master
server can run many data acquisition daemons at the same time,
each one communicating with RTUs. The process view server
and the data acquisition daemon reside on the same machine
and communicate using shared memory. The process view
browser is an HMI workstation that communicates with the
process view server by exchanging ASCII text over TCP/IP.
The process view server sends the browser the current status of
RTUs (containing widgets, graphs, and other objects) to display.
The operator sends commands to the process view server via
the browser, which are then passed to the data acquisition
daemon to be sent to RTUs.

Toward Survivable Intrusion-Tolerant pvbrowser. To repli-
cate the SCADA Master of pvbrowswer, we must replicate the

pvbrowser process view server and data acquisition daemon
processes using Prime. To ensure that replicas of the data
acquisition daemon generate identical poll requests, they will
use the logical timeout protocol (Section III-A). The process
view browser and the RTUs will not be replicated but will
communicate with proxy processes that use the Prime client
library to validate the data sent by the process view server and
data acquisition daemon replicas, respectively. This approach
ensures that the process view browser only processes valid
data and the RTUs only process valid commands and poll
requests. We will deploy a Spines overlay network between the
data acquisition daemon and the RTUs to ensure that critical
control and monitoring messages are delivered even if part of
the network is compromised.

Replicating pvbrowser and making it intrusion-tolerant
presents several challenges, requiring extensive changes to the
architecture. Currently, pvbrowser does not support replication
and sources of nondeterminism must be located and removed
in order to support the deterministic requirements of the
state machine replication approach. One particular source
of nondeterminism is the shared memory that is used for
communication between the process view server and data
acquisition daemon (the relative timing of reads and writes
may be different across replicas). To date, we have replaced
the shared memory with sockets for message passing, enabling
an initial replication of pvbrowser.

ACKNOWLEDGEMENT

I thank Marco Platania, Amy Babay, Jonathan Kirsch, Brian
Coan, and Daniel Obenshain for their collaboration, as well as
Yair Amir for his continual guidance. This work was supported
in part by DARPA grant N660001-1-2-4014. Its contents are
solely the responsibility of the authors and do not represent
the official view of DARPA or the Department of Defense.

REFERENCES

[1] Y. Amir, B. Coan, J. Kirsch, and J. Lane. Byzantine replication under
attack. In Dependable Systems and Networks With FTCS and DCC,
2008. DSN 2008. IEEE International Conference on, pages 197–206,
June 2008.

[2] A. Clement, E. Wong, L. Alvisi, M. Dahlin, and M. Marchetti. Making
Byzantine fault tolerant systems tolerate Byzantine faults. In Proc. NSDI,
NSDI’09, pages 153–168. USENIX Association, 2009.

[3] J. Deshpande, A. Locke, and M. Madden. Smart choices for the smart
grid. 2011. Alcatel-Lucent Technolgy White Paper.

[4] A. Homescu, S. Neisius, P. Larsen, S. Brunthaler, and M. Franz.
Profile-guided automated software diversity. In Code Generation and
Optimization (CGO), 2013 IEEE/ACM International Symposium on,
pages 1–11. IEEE, 2013.

[5] Johns Hopkins University Distributed Systems and Newtorks Lab. Spines
overlay messaging system. www.spines.org. Accessed: 2015-04-08.

[6] J. Kirsch, S. Goose, Y. Amir, D. Wei, and P. Skare. Survivable SCADA
via intrusion-tolerant replication. Smart Grid, IEEE Transactions on,
5(1):60–70, Jan 2014.

[7] M. Platania, D. Obenshain, T. Tantillo, R. Sharma, and Y. Amir. Towards
a practical survivable intrusion tolerant replication system. In SRDS
2014, pages 242–252. IEEE, 2014.

[8] pvbrowser. Simple process visualization. http://pvbrowser.de/pvbrowser/
index.php. Accessed: 2015-04-08.

[9] G. Santos Veronese, M. Correia, A. Bessani, and L. C. Lung. Spin
one’s wheels? Byzantine fault tolerance with a spinning primary. In
Reliable Distributed Systems, 2009. SRDS ’09. 28th IEEE International
Symposium on, pages 135–144, Sept 2009.

[10] P. Sousa, A. N. Bessani, M. Correia, N. F. Neves, and P. Verissimo.
Highly available intrusion-tolerant services with proactive-reactive
recovery. IEEE Trans. Parallel Distrib. Syst., 21(4):452–465, Apr. 2010.

www.spines.org
http://pvbrowser.de/pvbrowser/index.php
http://pvbrowser.de/pvbrowser/index.php

	Introduction
	System Components
	Current SCADA Systems
	Prime: Correct and Timely Operation Under Attack
	Defense Across Space and Time
	Spines: Timely Intrusion-Tolerant Overlay Network

	System Architecture
	Extending Prime to Support SCADA Systems
	Extending Current SCADA Systems

	Preliminary Results
	Latency Case Study: Eastern Seaboard Power Grid
	Implementation Using pvbrowser

	References

