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Abstract—We describe RADICS: Runtime Assurance of Dis-
tributed Intelligent Control Systems, which combines a Simplex-
based, black-box monitor with a white-box monitor to ensure
correct behavior and good performance of AI systems. The black-
box monitor allows the system to detect when the AI controller
is on a failing trajectory and use a provably safe, but less
performant algorithm, to right the system. The white-box monitor
predicts when the AI controller will be put on such a trajectory
before it happens and helps maximize the performance of the
overall system. We describe the overall approach in detail and
implement a simple version of it on a case study into controlling
the lights in a small traffic grid.

Index Terms—Assured AI, Reinforcement Learning Depend-
ability, Traffic Light Controller

I. INTRODUCTION

The majority of the world population is projected to live
in urban areas by 2050. To support this rapid increase, we
need to modernize our aging infrastructure with controllers
that can constantly optimize the system’s performance, such
as with machine learning techniques. In recent years, AI/ML
deep neural networks (DNN) have brought dramatic improve-
ments to diverse tasks such as automatic speech recognition,
natural language processing, image recognition, medical image
analysis, bioinformatics, and autonomous driving. One of the
main limitations of these techniques is their opaque failure
modes: it is difficult to understand exactly how these systems
work and predict when and how they will fail.

In the vast majority of cases, these systems yield incred-
ible results, much better than what was possible just a few
years ago. However, in rare cases, they fail spectacularly in
unexpected ways, often in ways that are hard for humans to
accept. It looks like the AI system that worked perfectly in
so many complex situations failed miserably in a case that
looks obvious to the human eye [1]. Even if that error can be
fixed in the DNN through additional learning, it is not clear
how to generalize this concept to other potential errors, and
the suspicion is that the distribution of these erroneous edge
cases is such that no amount of training will assure that all
edge cases that come up in real life would be covered [2].
We believe two key issues must be addressed before such
AI systems can be assured: (1) fault tolerance and (2) ML
competence.
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The complicated nature and scale of these systems make
them infeasible to model with high fidelity to provide
strong design-time certification. Traditional Simplex-based ap-
proaches to provide fault tolerance to safety critical systems
may not be sufficient. These approaches can either be too lax
and allow the system to enter unsafe states or encumber the
system such that no performance can be gained from auton-
omy. However, some method of fault tolerance is required
since edge cases and adversarial inputs seem inherent in many
AI based solutions.

We introduce RADICS: Runtime Assurance of Distributed
Intelligent Control Systems, to help solve some of these
problems. RADICS uses both black and white box monitoring
in a Simplex-like [3] approach to create a reliable system that
achieves good performance on average, without suffering from
failure cases as straight AI systems do. A decision module
takes input from both monitors to determine the correct action.

The black-box ensures correctness by detecting when the
system is on a failure trajectory and switches to a provably
safe, but less effective algorithm. When the safe algorithm has
righted the system, control is given back to the AI controller.

The white-box monitor helps improve the performance by
predicting when the system might begin a failure trajectory.
The white-box monitor can detect when the AI controller is
unsure of the correct action. This indicates it might be worth
switching to the safe algorithm sooner, to avoid paying the full
cost associated with declining performance to the black-box
threshold.

RADICS can only solve problems that have a few precon-
ditions. The first is that no single decision can lead to a total
system failure. If any single decision can lead to failure, then
RADICS would always have to let the safe algorithm control
the system, defeating its purpose. This likely eliminates some
applications such as self-driving cars, but still allows for many
other system control problems where the system can gradually
fall into bad states.

The second is that a safe alternative algorithm is known.
If the safe algorithm is provably correct, RADICS can ensure
the whole system is safe. However, even if we cannot find
a provably good algorithm, RADICS can still be useful. If
some algorithm is currently being used to solve the problem
and has been deemed acceptable, then RADICS can achieve
performance at least as good in the worst case, and normally
better, failing, at most, as often as the acceptable algorithm.
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Contributions

1) We introduce the RADICS architecture, the first to
combine black and white box monitoring to maximize
the performance of assured AI systems.

2) We present a rudimentary traffic control case study to
show the effectiveness of the RADICS architecture.

II. RADICS ARCHITECTURE

RADICS is an architecture for creating high accuracy,
dependable AI systems by combining highly accurate AI tech-
niques with monitors to ensure correctness. RADICS uses both
black and white box monitoring to maintain high accuracy,
while ensuring correctness. We first describe how to use black-
box monitoring and then extend this to take advantage of
white-box monitoring.

A. Black-Box Monitoring

Black-box monitoring is a standard approach for creating
reliable systems. A black-box monitoring system involves
four major components: a safe controller, which is able to
control the situation in an acceptable manner; an untrustworthy
controller, with better average performance, but may suffer
from unacceptable faults; a monitor, which looks at the state
of the entire system and determines if the system is in a good
state; and a decision module, which chooses which controller
to use at any point in time.

a) Safe Controller: The safe controller is a system com-
ponent fully capable of controlling the system in any state.
The safe controller can be a simple, static algorithm, which
has theoretical guarantees about its performance. However,
this safety often comes at a cost and thus the safe controller
is expected to have worse performance in many cases. In
situations where provably good safe controllers are hard to
create, the need for them can be alleviated with a small amount
of risk. If the problem is currently being solved, then there
is some solution which has an acceptable level of risk. This
solution can be used instead of a provably safe controller
and RADICS will allow the overall system performance to
increase, while still only failing in the situations where the
existing solution would fail.

b) AI controller: The AI controller is a component also
capable of controlling the overall system. It should, on average,
perform better than the safe controller. However, the AI system
may incur unacceptable faults. AI systems are expected to be
able to perform much better on the common case, but current
research indicates that there will always be edge cases or
adversarial scenarios that exist and cannot be eliminated by
simply training more, thus the need for a higher level system
such as RADICS.

c) Black-Box Monitor: The black-box monitor looks at
the overall state of the system and determines how far the
system is from breaking any invariant. This is equivalent to
saying which state from Figure 1b we are in.

d) Decision Module: The decision module is responsible
for determining when the system should switch between con-
trollers. It chooses the safe controller whenever it needs to so
that it can ensure correctness and the AI controller to improve
overall performance since the AI controller is expected to
outperform the safe controller in common situations.

The system, which can be seen in Figure 1a, roughly works
as follows: State is collected from the environment and sent
to two controllers, one known or proven to be safe and an AI
controller, which is expected to give good performance. State
is also sent to a black-box monitor, which can detect if the
system is in danger. Each controller proposes an action and
sends it to the decision module. The monitor sends information
about how far the system is from breaking invariants. The
decision module uses this distance and the state information
to choose between actions. When the system is in the Safe
Region, as shown in Figure 1b, the AI can control the system
since there is no possibility of failure. When the system enters
the Danger Region, the decision monitor selects the safe
controller, so the system has time to right itself before it
reaches the Failed Region.

The decision to switch to the safe algorithm from the AI
controller is straightforward. It takes some amount of time for
the safe controller to right the system after being switched to.
We can determine how far it can continue to degrade after
switching to the safe controller. Whenever we are within this
range, we switch to the safe controller so that it always has
enough time to right the system before it fails. This range is
represented by the red region in Figure 1b.

The decision to switch back is similar. Whenever the system
is far enough from the failure zone (outside the red zone), the
system switches to the AI controller. This switching approach
will perform correctly in all cases, but can perform poorly.
One such case is if the system is in a long-term state which
the AI has not trained properly for. This case causes oscillation
as follows:

1) The environment is in a state the AI is not trained for
2) As system performance degrades, the system switches

to the safe controller
3) Once the performance has stabilized, the system

switches back to the AI controller
4) The AI controller still fails at this case and thus perfor-

mance falls until it switches back to the safe controller
This oscillation can be handled by using simple timers.

After switching to the safe controller, the decision module
requires that it stays there for some amount of time. We
introduce a white-box monitor, which enables more complex
switching mechanisms, which can help eliminate oscillation.

Black-box monitoring has previously been used for AI
systems [4], [5]. However, only using a black-box monitor
limits the types of switching mechanisms used. Sometimes
these systems are overly conservative, such as in [3], [6],
where once the system has switched to a safe controller, it
remains there until reset manually. Another approach uses
reachability analysis to determine that it will stay in the Safe
Region for at least some amount of steps [4], [5], but this

183

Authorized licensed use limited to: Johns Hopkins University. Downloaded on July 26,2022 at 14:58:31 UTC from IEEE Xplore.  Restrictions apply. 



Critical Infrastructure

Black-Box
Monitor

Safe
Controller

AI
Controller

Decision Module

Action

State

Comman
dFault?Command

(a) Black-box monitoring system diagram. System state is collected from the
environment and sent to the two controllers and the black-box monitor. Each
controller issues a command and sends it to the decision module. The decision
module takes these two commands along with a fault distance from the monitor
to create an action.

Safe Region

Danger Region

Failed Region

(b) The AI controller influences behavior when any
invariant is not in danger of being violated and thus
is in the Safe Region. The monitor determines
whether the system is in the Danger Region
and then the safe controller takes over to avoid the
possibility of reaching the Failed Region.

Fig. 1: Basic black-box monitoring overview

can lead to oscillations as shown above unless timers or such
are used.

B. White-box Monitoring
One of the problems with black-box monitoring is that the

system does not know anything is wrong until we are already
in a bad state. This, along with the fact that it can take some
amount of time for the safe controller to right the system,
causes a dip in performance whenever the AI controller is
incapable of handling the situation. We can help alleviate some
of these issues with white-box monitoring, which can look into
the state of the AI controller, and thus have a better idea of how
it is behaving. The general idea is that the white-box monitor
will be able to predict when the AI controller is likely to
make a mistake and switch to the safe controller earlier, as the
performance starts to degrade, before the black-box monitor
can detect anything is amiss.

The main task of the white-box monitor is to determine
how confident the AI controller is in its decision. If the white-
box monitor can determine that the AI controller is not very
confident in its actions, we can switch to the safe controller
before a large drop in performance happens. We can think of
this in the same fashion as the black-box monitor with the
addition of a Questionable Region (Figure 2b) to the
existing Safe Region, Danger Region, and Failed
Region. This works as follows: if we are getting close to
the area that the black-box monitor would have to save us, we
might want to switch away from the AI controller to avoid
a drop in performance. However, if the white-box monitor
determines the AI controller has high confidence in its action,
we will allow it to go up to the Danger Region region,

while if it detects low confidence, we will switch it sooner. The
higher the confidence, the farther into the Questionable
Region region the decision module will allow the system to
progress before switching to the safe controller.

The white-box monitor can also be used when switching
back to the AI controller from the safe controller, when
the system has reached the Questionable Region. The
white-box monitor determines how confident the AI controller
is, and its actions are only taken if it is very confident.
This can help eliminate the oscillation issue described above
since the white-box monitor can determine if we are likely
to perform poorly when we switch back, which can prevent
the unnecessary switches away from and back to the safe
controller.

The white-box monitor alone is not sufficient to keep the
system safe. The white-box monitor can only determine the
AI controller’s own expected performance, given the current
situation. If the situation is rapidly changing, or the white-box
monitor does not assess the situation correctly, the black-box
monitor is still necessary to ensure overall system correctness.

III. CASE STUDY: REINFORCEMENT LEARNING FOR
TRAFFIC LIGHTS

We examine the effectiveness of RADICS on a case study
of traffic light controllers. We use the Simulation of Urban
Mobility (SUMO) framework [7] to simulate the traffic light
system. Each simulation is a two-by-two traffic grid. We
define outside edges as edges on which vehicles enter the
grid. There are eight outside edges for the grid, as seen in
Figure 3. Vehicles are routed randomly. Each simulation step
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(a) RADICS System diagram. In addition to the black-box monitoring system in Figure 1a,
we add a white-box monitor which receives state from the AI controller and determines the
AI’s certainty in its decision. The decision modules uses this extra information to improve
the performance of the system.

Safe Region

Questionable Region

Danger Region

Failed Region

(b) When the system is in the
Questionable Region, the decision
monitor uses the output from the white-
box monitor to select which controller to
use. This can allow us to switch away
from the AI controller sooner when it is
unsure and likely to have bad results

Fig. 2: RADICS overview

Fig. 3: Example Traffic Grid

is equivalent to 0.1 seconds in real time. The task is to control
the lights to maximize the throughput of the system.

This is a fairly simple task, which reinforcement learning
methods have been used on before to improve system behavior
[8]. The concern with using any AI solution in infrastructure
is what will it do in untrained scenarios. We will describe a
simple AI solution to this task and then show one such scenario
where the AI system fails, and the simple, safe controller
performs well.

We implemented the four components of the black-box
approach as described in Section II-A and a rudimentary
white-box monitor.

The safe controller is a simple, timer-based approach. The
light phases1 go in a cycle timed so that each car will wait,

1A light phase describes which lanes are allowed to proceed through the
intersections

at most, once when attempting to go through an intersection.
This approach performs reasonably well in all situations.

We implement a deep reinforcement learning AI controller
using the Flow framework [9]. The model was trained on 500
vehicles per hour on each outside edge for 80 million steps2.
After the training, the model performed around 10% better
than the safe controller on the trained scenario. We note that
the model was insufficiently trained, but as [2] discusses, all
AI systems are expected to have untrained edge cases.

The black-box monitor is a simple mechanism which tracks
the average speed of all cars in the system. We want to prevent
the system’s average speed from dropping too much.

The white-box monitor, on the other hand, runs a test
simulation every 100 steps. It uses the average inflow rates of
the past 100 steps to simulate the next 1000 steps and outputs
the average speed.

The decision module takes in the average speeds from both
the black-box and white-box monitors. Switching to the safe
controller happens whenever the black-box monitor detects
the speed has dropped below 4 m/s or the white-box monitor
predicts that the system will in the near future. We switch
back when both the black-box measures the current average
speed to be above 5 m/s and the white-box monitor predicts
the average speed to stay above 5 m/s assuming the near past
represents the near future. To avoid oscillation, we wait at least
60 seconds after switching to the safe controller before we can
switch back to the AI controller.

2In our environment this training took about a week.
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TABLE I: Average speed of each controller in meters per
second. Segments 1 and 3 are the trained scenarios, while
Segment 2 is an anomalous scenario. We see that during
segment 1, all AI based controllers perform the same and
outperform the safe controller. During the anomaly in segment
2, the AI crashes, but RADICS is able to rescue the system
from performing too poorly, just using a black-box monitor is
able to control the crash, but not as well.

Controller Overall Segment 1 Segment 2 Segment 3

Safe controller 5.65 5.61 5.90 5.63
AI Controller 5.53 6.23 3.42 5.47
Black-Box 5.76 6.23 4.66 5.64
RADICS 5.94 6.23 5.06 5.91

IV. EVALUATION

We present a preliminary evaluation of RADICS on the
traffic grid problem. We evaluate four different controllers:
the safe controller, the AI controller, a black-box monitoring
approach, and RADICS with both black and white box mon-
itoring.

We test the system on two different scenarios. The first is
the trained scenario: 500 vehicles per hour on each edge. The
second is an anomalous scenario that we found that the AI
controller performs poorly on. Specifically, we have an inflow
of 500 vehicles per hour on one edge and 100 vehicles per
hour on the other edges. We find this scenario very interesting
because we would never expect the AI to perform worse,
because the scenario simply removes cars from the trained
scenario, so one would expect that running a similar algorithm
should work at least as well.

The evaluation runs as follows: The system starts with the
trained scenario, since we expect the AI system to be well
suited for the common case; we call this part segment 1. Then,
at some point, we switch the system to a case we know the AI
controller will perform poorly on, which we call segment 2.
After a brief time, the system goes back to the trained scenario,
which we call segment 3. An ideal system will exceed the
safe controller in both the first and last segments and perform
similarly in the middle case. Specifically, we ran a simulation
of 25,000 steps; segment 1 has a duration of 10,000 steps,
segment 2 has duration 3000 steps, and segment 3 has duration
12,000 steps. Since each step represents 0.1 seconds, this
gives us 5 minutes of time when the system deals with the
anomaly and 20 minutes to observe how the system corrects
itself afterwords.

We present the full results in Table I. The AI controllers
perform better than the safe controller in the regular scenario.
Once the system enters the anomalous scenario, the safe
controller outperforms the AI based controllers. When the
system reverts to the trained scenario, both monitoring based
systems switch to the AI controller and give better results.
The AI controller alone is still in a bad state in Segment 3
because it takes a substantial amount of time to recover from
the anomalous period.

To show how the system behaves during the anomalous
scenario in more details, we look at the average speed for each

controller over time in Figure 4. Additionally, we normalize
the average speed of AI-based controllers with respect to the
safe controller in Figure 5. We see that in Segment 1, all AI
based systems run identically, since they all run the same AI
controller. We notice that the AI controller outperforms the
safe controller. When Segment 2 begins, we see all AI based
controllers dip in performance; however, both monitoring
based ones are able to catch the drop in performance and
rescue the system. The addition of the white-box monitor in
RADICS is able to catch the anomaly sooner, and as such,
performs better. The simple AI controller cannot handle the
untrained scenario — the system crashes and recovers slowly
when the system returns to a trained scenario.

During Segment 2, the RADICS controller with both mon-
itors switches to the safe controller much earlier than the one
with only a black-box monitor. This is because the white-box
monitor successfully detects the anomaly based on the inflow
from the near past sooner than the black-box monitor was able
to detect it. With only the black-box monitor, the RADICS
controller oscillates between the AI and safe controllers since
the system decides to switch to the AI controller each time the
safe controller brings the performance up. On the other hand,
RADICS with both monitors determines that the system is still
in the anomalous case by constantly running test simulations
and then stays with the safe controller.

V. CONCLUSION

We have introduced the RADICS framework for creating
reliable and performant systems to enable the use of AI
in critical infrastructure. We used black-box monitoring to
ensure system correctness, while using white-box monitoring
to minimize the cost of the AI component failures and thus
maximize the overall system performance. We implemented
a version of RADICS to manage the traffic lights in an
intelligent traffic control system for a small grid and showed
the effectiveness of RADICS in its ability to improve the
average traffic speed.

Future work mostly involves creating a larger and more
complicated case study to fully show the effectiveness of
RADICS. To do this, we will both use a larger and more
complicated traffic grid which will involve the use of scalable
ML techniques, rather than the monolithic approach currently
used, and continue research into better white-box monitors.
The current white-box monitor relies entirely on simulation;
we envision different ones which are able to determine such
things as how similar the current situation is from ones that
we trained on and how far the current state is from making
a different decision. Ideally, multiple measurements would be
used jointly to create a robust white-box monitor.

Lastly, we hope to look into the problem of composing
multiple RADICS protected infrastructure as part of a larger,
reliable system. For example, each traffic light would have
its own RADICS, and they can switch between states, both
individually and jointly, to maximize system performance.
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Fig. 4: The average speed of all vehicles in the system over time. We evaluate four different controllers: the safe controller,
the AI controller, a black-box monitoring approach, and RADICS with both black and white box monitoring. Horizontal lines
show the average speed of each controller in each segment, whereas vertical lines mark the start and end of the anomalous
scenario. We use the dotted line when a safe controller is in control and the solid line when an AI controller is.

Fig. 5: Normalized average speed of AI-based controllers with respect to the safe controller. We divided the average speeds
of AI-based controllers in Figure 4 by the average speed of the safe controller.
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