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Abstract—Increasing threats to power grid infrastructure are
driving the need to build Byzantine-resilient systems that can
continue to operate correctly despite failures and attacks. How-
ever, the real-time requirements of power grid infrastructure call
for a more rigorous evaluation of Byzantine resilient systems than
the traditional evaluations performed in the context of standard
IT applications. We discuss these requirements, and the potential
of commercial-off-the-shelf and open source solutions to support
real-time resilient systems.

I. INTRODUCTION

The rising number of cyberattacks against critical infrastruc-
ture reinforces the need to build Byzantine resilient power grid
infrastructure [1], [2]. While Byzantine resilient techniques
have been developed in the context of IT applications [3],
applying them in the power grid domain brings the need to
consider strict real-time requirements. Supervisory Control and
Data Acquisition (SCADA) operations in power grid control
centers typically require latency of 100-200ms [4], [5], and the
requirements become much more stringent as we move from
control centers to substations that carry out critical protection
functions, due to the physical properties of the system.

During a fault condition, currents flowing into the faulted
zone experience a rapid surge (many orders of magnitude
greater than during normal conditions). This sudden increase
in current is capable of damaging grid equipment in just a few
electrical cycles (in the US, a cycle is 16.667ms). Therefore,
according to industry and standardization bodies (IEEE, IEC),
fault identification must occur within a quarter power cycle,
i.e. 4.167ms [4].

Figure 1 shows a fault condition, where the current swelling
behavior can be observed. In a well-designed system, a quick
relay response enables the circuit breaker to have more time
to safely dissipate the energy present within the system. Due
to the amount of energy being released, circuit breakers can
take 1-3 cycles to fully interrupt the fault/arcing current,
drastically reducing the time to fault identification. If this
fault is not identified quickly, damage to physical equipment,
and cascading escalations to otherwise healthy systems may
be unavoidable. Damaged grid equipment like the 345kV
transformer can cost millions of dollars and have lengthy
replacement process in the orders of years. Therefore, meeting
the 4.167ms requirement is critical.

Most existing Byzantine resilient techniques are not de-
signed for or evaluated under these strict real-time require-
ments. Hence, the first goal of our work is to investigate
the type of evaluation needed to provide confidence that
Byzantine-resilient systems can meet the real-time require-
ments of power grid infrastructure in practice.

The second goal of our work is to use the rigorous evalua-
tion strategy we propose to explore new deployment trade-offs.
In particular, we investigate the potential of commercial-off-
the-shelf (COTS) and open-source solutions to support real-
time Byzantine-resilient infrastructure. Compared to special-
ized real-time systems, COTS and open-source systems are
less expensive, easier to deploy and manage, and easier to
audit [6], making them an attractive option.

II. LANDSCAPE OF BFT SMR EVALUATION

Byzantine Fault Tolerant State Machine Replication (BFT
SMR) is a classical approach to tolerate intrusions in net-
worked systems. Initial works on BFT SMR focused on
proving that the techniques are correct and practical for IT
applications like file systems and storage [3], [7]. As the
research matured, performance became a key focus [8]-[11],
but most works focused on normal-case throughput and scaling
evaluations. Some of these works expanded evaluation to
include malicious behavior [8], [11]-[14], and even designed
protocols to maintain performance under attack [12], [15],
[16], but their empirical evaluations are still based on IT
domain requirements. Even in more recent BFT SMR pro-
tocols designed for permissioned blockchains, the focus of
evaluations remains on throughput scalability and blockchain
requirements [17]-[19]. Frameworks have been proposed to
evaluate and compare the performance of BFT algorithms, but
they generally focus on quantifying performance analytically,
based on the number of cryptography operations or messages
exchanged, rather than on empirical evaluation [20], [21].

III. EVALUATING BYZANTINE-RESILIENT POWER GRID
INFRASTRUCTURE

To gain confidence that a system can meet real-time require-
ments in practice, it is necessary to (1) consider the worst-
case number of constraint violations, not only average latency,
(2) evaluate the most demanding operating conditions that the
system is expected to work under, including all failure/attack
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Fig. 1. Fault detection timing requirements in substation

TABLE 1
PERFORMANCE IN DIFFERENT OPERATING CONDITIONS WITH FOUR RELAY NODES (f = 1,k = 1)

Normal Kernel (microseconds) Real-Time Kernel (microseconds)
Operating Condition Minimum  Average Maximum | Minimum Average Maximum
Fault-Free (Normal) 1723 2187 3323 1637 1950 3596
Fail-Stop Fault or Proactive Recovery 1871 2260 3326 1608 1976 3726
Fail-Stop Fault and Proactive Recovery 1912 2328 7617 (8%) 1750 2015 3996
Byzantine Fault 1737 2227 3785 1665 1984 4002
Byzantine Fault and Proactive Recovery 1867 2313 7699 (6*) 1767 2019 4101

* The count of actions that crossed 4.167 milliseconds (out of 1 million total actions)

cases, (3) evaluate each operating condition over a sufficiently
long period of time, and (4) use a realistic testbed.

Our Spire intrusion-tolerant SCADA system took a step
towards evaluating real-time requirements at the control-center
level [22]. It used an extensive 30-hour evaluation on a real
wide-area network for the normal-case, and shorter under-
attack evaluations in a cluster environment with emulated
wide-area latencies, analyzing how many updates failed to
meet the target latency of 100-200ms [22].

However, at the substation level, even an evaluation like
the one in [22] is not sufficient, as shown by our work on
Spire for the Substation, a real-time Byzantine-resilient system
for substation protection [23]. In Spire for the Substation, we
developed two Byzantine-resilient protocols: Arbiter Protocol
and Peer Protocol. Both use four relay nodes to simultaneously
tolerate one Byzantine relay and one proactive recovery but
have different deployment tradeoffs [23]. In that work, we rig-
orously evaluated both protocols, running each failure/attack
case for 24 hours, processing 1 million actions. That evaluation
showed that while the Peer Protocol has a smaller attack
surface and can seamlessly integrate into the substation, its
tradeoff is a slight risk of not meeting the latency requirement

under the most demanding attack scenarios.

Figure 6 illustrates the importance of this extensive evalu-
ation. Running the Peer Protocol for 1 million actions with
a simultaneous Byzantine fault and proactive recovery, we
see that 6 actions cross the 4.167ms threshold. While an
evaluation with 100,000 under-attack actions (taking hours)
would be significantly more extensive than those of many BFT
systems (see Section II), it would not necessarily show these
constraint violations. For example, in Figure 6, in the slices
from [320000, 520000], [620000, 720000], [720000,820000],
[820000, 920000], we see intervals of 100,000 actions or more
with none crossing 4.167ms. The 1-million-action evaluation
is needed for an accurate view of the protocol’s performance.

Given the Peer Protocol’s tradeoff of better deployment
properties vs the risk of not meeting real-time requirements,
one possibility is to explore specialized real-time hardware
and/or software. However, maintaining a COTS hardware and
open-source software environment simplifies system manage-
ment and maintenance [24], [25]. Therefore, we explore a
different trade-off, evaluating whether the Linux real-time
kernel option can achieve the needed performance.

Real-time Kernel Evaluation. We deployed Spire for the
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Fig. 4. Normal Kernel: Fail-Stop Fault with Proactive Recovery
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Fig. 6. Normal Kernel: Byzantine Fault with Proactive Recovery

Substation (Peer Protocol) in our testbed with four Intel
Xenon E3 servers with 16GB RAM running CentOS 8 and
connected by a 1Gbps network'. The deployed system consists
of four relay nodes and therefore can simultaneously tolerate

IThis is a different testbed than the one in [23]. Although the results
show minor quantitative differences between the two testbeds, their qualitative
profiles are the same.
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Fig. 3. Real-Time Kernel: Fail-Stop Fault
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Fig. 5. Real-Time Kernel: Fail-Stop Fault with Proactive Recovery
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Fig. 7. Real-Time Kernel: Byzantine Fault with Proactive Recovery

up to one faulty relay node (fail-stop or Byzantine) and up
to one additional relay node undergoing proactive recovery.
Using the same 24-hour, 1-million-action evaluation strategy
described above, we compared the system using the normal
Linux kernel, and with the real-time kernel patch and tuning
on the same machines. Table I reports the minimum, average
and maximum latency in microseconds for all five operating



conditions supported by the threat model for both the normal
and real-time kernels.

While Table I summarizes the results, Figures 4, 5, 6
and 7 focus on the most demanding scenarios: Fail-Stop
fault with simultaneous proactive recovery and Byzantine
fault with simultaneous proactive recovery. In the former,
one of the relay nodes is unavailable due to a fail-stop fault
while, simultaneously, an additional relay node is undergoing
proactive recovery. In the latter, the Byzantine relay node
performs two simultaneous attacks for each action. First, the
Byzantine relay node sends a corrupt message that will not
be useful. Second, the Byzantine relay node performs a short
intermittent denial of service attack on the other relay nodes
to consume their network and computational resources further.
In both of these operating conditions, the proactive recovery
node is not rejuvenated for the entire test duration, so there
are only two correct relay nodes available throughout the test.
We refer to this condition with only two correct relay nodes
available as non-optionality condition.

Under non-optionality, meeting the latency requirement is
particularly tough. With only two nodes available, a ran-
dom delay on either node (e.g., from network delays, kernel
scheduling, or even effects of a Byzantine node’s actions)
would be reflected in the end-to-end latency. Compare this
situation to Fail-Stop fault condition in which three nodes are
available. In such a case, delays would have to occur on two
of the three nodes independently and at the same time in order
to be reflected in the final latency. For both the normal and
real-time kernel, comparison of their Fail-Stop fault condition
performance (Figures 2 & 3) to that of Fail-Stop fault with
simultaneous proactive recovery condition (Figures 4 & 5)
exemplify this effect i.e., Figure 2 vs Figure 4 and Figure 3
vs Figure 5.

The normal linux kernel is optimized for throughput and
fair scheduling of tasks, while the real-time kernel is opti-
mized to maintain low latency, consistent response time and
determinism. These characteristics are particularly important
in the conditions with non-optionality where any random delay
impacts the system performance. Due to its features, in real-
time kernel benchmarks, when we use high priority and FIFO
scheduling policy, all actions meet the 4.167ms requirement,
and average latency is reduced by about 300 microseconds
across all operating conditions (Table I). These observations
can also be immediately noted by comparing benchmark
plots of normal kernel to those of real-time kernel in the
three operating conditions shown: Fail-Stop fault (Figure 2 vs
Figure 3), Fail-Stop fault with simultaneous proactive recovery
(Figure 4 vs Figure 5), and Byzantine fault with simultaneous
proactive recovery (Figure 6 vs Figure 7) .

The determinism and latency stability of real-time kernel
offers a new deployment option for real-time Byzantine re-
silient critical infrastructure, enabling us to get the benefits of
the Peer Protocol while meeting real-time requirements.

COTS and Open Source Discussion. The real-time kernel
option enables us to remain in the more flexible open-source
realm while still meeting real-time requirements, which is of

increasing interest in the power industry. The protective relay
is a relatively expensive device (tens of thousands of dollars).
Each substation has multiple relays employed for protection
schemes. There are hundreds to thousands of substations
across a country (e.g., U.S has over 55,000 substations).
Hence, to reduce cost, there is a high incentive to limit the
additional relays needed in a Byzantine resilient scheme.

In a deployment, each relay node discussed above consists
of a protective relay device directly connected to the Spire
for the substation harness. Protective relays are typically
specialized hardware relays with proprietary software imple-
menting the protection functions. As we need four relays in
the four relay nodes to tolerate an intrusion, the system will
be costly. To reduce the cost, we experimented by substituting
a hardware protective relay in one of the relay nodes with
a software relay. The software relay is implemented on an
Intel NUC (CentOS) with real-time kernel to perform the
same protection function as hardware protective relays. In fact,
the system successfully underwent red team experiments with
three hardware relays (from GE, Siemens and Hitachi Energy)
and a single software relay (on a different test bed at Pacific
Northwest National Laboratory). However, the implications of
using a real-time kernel on other processes running on the
nodes, overall throughput and the deployment environment
needs further investigation.

IV. CONCLUSION

We have presented the need for rigorous evaluation of
Byzantine-resilient systems with respect to the real-time re-
quirements of critical infrastructure. We also investigated the
potential of COTS and open source systems to support real-
time Byzantine resilient power grid infrastructure.
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