
Fast Total Ordering for Modern Data Centers

Amy Babay, Yair Amir
Department of Computer Science at Johns Hopkins University

{babay, yairamir}@cs.jhu.edu

Technical Report CNDS-2014-2 - December 2014
http://www.dsn.jhu.edu

Abstract—The performance profile of local area networks has
changed over the last decade, but many practical group commu-
nication and ordered messaging tools rely on core ideas invented
prior to this change. We present the Accelerated Ring protocol,
a novel ordering protocol that improves on the performance of
standard token-based protocols by allowing processes to pass the
token before they have finished multicasting. This performance
improvement is obtained while maintaining the correctness and
other beneficial properties of token-based protocols.

On 1-gigabit networks, a single-threaded daemon-based im-
plementation of the protocol reaches network saturation, and
can reduce latency by 45% compared to a standard token-based
protocol while simultaneously increasing throughput by 30%. On
10-gigabit networks, the implementation reaches throughputs of
6 Gbps, and can reduce latency by 30-35% while simultaneously
increasing throughput by 25-40%. A production implementation
of the Accelerated Ring protocol has been adopted as the default
ordering protocol for data center environments in the Spread
toolkit, a widely-used open-source group communication system.

I. INTRODUCTION

Data center applications rely on messaging services that
guarantee reliable, ordered message delivery for a wide range
of distributed coordination tasks. Totally ordered multicast,
which (informally) guarantees that all processes receive mes-
sages in exactly the same order, is particularly useful for
maintaining consistent distributed state in systems as diverse
as financial systems, distributed storage systems, cloud man-
agement, and big data analytics platforms.

Many ordering protocols have been developed to build such
messaging services. Défago et al. survey these existing total
ordering protocols and classify them based on their ordering
mechanisms [1]. A particularly successful type of ordering
protocol is the class of token-based protocols, which Défago et
al. split into moving sequencer and privilege-based categories.

Token-based protocols typically arrange the processes par-
ticipating in the protocol in a logical ring and order messages
using a token (a special control message) that carries the infor-
mation needed to order new messages and is passed around the
ring of processes. In moving sequencer protocols, any protocol
participant can send a message at any time, but a message is not
ordered until the token-holder assigns it a sequence number.
In privilege-based protocols, a protocol participant may only
send messages to the group upon receiving the token, but each
participant is able to assign sequence numbers to its messages
before sending them, so messages are ordered at the time they

are sent. In the remainder of the paper, we use the term token-
based to refer primarily to privilege-based protocols, since
the protocols that have translated into practical systems are
largely of this type, although some ideas may apply to moving
sequencer protocols as well.

Token-based protocols are attractive because of their sim-
plicity; a single mechanism, the token, provides ordering,
stability notification, flow control, and fast failure detection.
Such protocols also achieved high network utilization at the
time they were introduced; the Totem Ring protocol [2], [3],
for example, achieved about 75% network utilization on 10-
megabit Ethernet using processors standard for 1995. The
simplicity and high performance of token-based protocols led
to their use in practical messaging services, including the
Spread toolkit [4], the Corosync cluster engine [5], the Appia
communication framework [6], [7], and others.

When Fast Ethernet replaced the original 10-megabit Eth-
ernet, network speed increased by a factor of ten, and network
span shrunk by the same factor (from 2000 to 200 meters)
so that basic network characteristics remained essentially the
same. This allowed the same protocols to continue to utilize
the network well. However, on networks common in today’s
data centers, these protocols do not reach the same network
utilization as in the past while maintaining reasonable latency.

We were exposed to this problem through our experience
with applications using the Spread toolkit, a publicly avail-
able, widely-used, group communication toolkit that provides
flexible semantics for message delivery and ordering, using
a variant of the Totem Ring protocol. Spread reached about
80% network utilization on 100-megabit Fast Ethernet, using
processors common for 2004 [8]. However, out-of-the-box, we
measured Spread 4.3 (the latest release prior to our work)
as reaching 50% network utilization on a 1-gigabit network.
Careful tuning of the flow control parameters, which many
users are unlikely to attempt, allows Spread 4.3 to reach 800
Mbps in throughput, but the cost in latency is very high.

One reason that protocols originally designed for 10-
megabit Ethernet maintained their high network utilization
with low latency on 100-megabit Fast Ethernet but not on 1-
gigabit, 10-gigabit, and faster networks, is that these faster
networks could not use the same techniques as Fast Ethernet
to scale throughput (that would have required a 1-gigabit
network span to be limited to 20 meters). Moving to these
faster networks required changing the network architecture
and adding buffering to switches. This changed networking
trade-offs. While throughput increased by a factor of 10, 100,

1



or more, and latency was substantially reduced, the latency
improvement was significantly lower than the corresponding
improvement in throughput.

This change in the trade-off between a network’s through-
put and its latency alters the performance profile of token-
based protocols, as these protocols are particularly sensitive
to latency. The ability to multicast new messages rotates with
the token, so no new messages can be sent from the time
that one participant finishes multicasting to the time that the
next participant receives the token, processes it, and begins
sending new messages. Note that we are not concerned with
latency due to particular machines running slowly (e.g. because
their capacity is consumed by many running processes). In
production deployments, we are able to ensure that the ordering
middleware has the resources it needs (e.g. with real-time
priorities in Linux). Instead, we are concerned with latency
intrinsic to the network.

Furthermore, for common processors today, 10-gigabit
networks change trade-offs further by making networking con-
siderably faster relative to single-threaded processing. Unlike
in the past, this trade-off is not likely to change soon, as
the processing speed of a single core is no longer increasing
at a rate comparable to the rate of improvement in network
throughput, with Moore’s law reaching its limit.

The gap between the performance of existing protocols and
the performance that is possible in modern environments led us
to design the Accelerated Ring protocol. The Accelerated Ring
protocol compensates for, and even benefits from, the switch
buffering that limits the network utilization of other token-
based protocols. Using a simple idea, the Accelerated Ring
protocol is able to improve both throughput and latency com-
pared to existing token-based protocols without significantly
increasing the complexity or processing cost of the protocol.
The Accelerated Ring protocol is still able to take advantage of
the token mechanism for ordering, stability notification, flow
control, and fast failure detection.

Moreover, single-threaded implementations of this protocol
are able to saturate 1-gigabit networks and considerably im-
prove performance on 10-gigabit networks without consuming
the CPU of more than a single core. Limiting CPU consump-
tion to a single core is important for this type of ordering
service, as it is intended to provide a service to applications
that may be CPU intensive; an ordering service that consumes
a majority of the processing power of the machine is likely to
be limiting in many common practical deployments.

Similarly to other privilege-based token-based protocols,
the Accelerated Ring protocol passes a token around a logical
ring, and a participant is able to begin multicasting upon
receiving the token. The key innovation is that, unlike in other
protocols, a participant may release the token before it finishes
multicasting. Each participant updates the token to reflect all
the messages it will multicast during the current rotation of
the token around the ring before beginning to multicast. It
can then pass the token to the next participant in the ring at
any point during the time it is multicasting. Since the token
includes all the information the next participant needs, the next
participant can begin multicasting as soon as it receives the
token, even if its predecessor on the ring has not yet completed
its multicasting for the current token rotation.

However, the fact that the token can reflect messages that
have not yet been sent requires careful handling of other
aspects of the protocol. For example, messages cannot be
requested for retransmission as soon as the token indicates
that their sequence numbers have been assigned, since this may
result in many unnecessary retransmissions. A participant may
not have received all the messages reflected in the token, not
because they were lost, but because they were not yet sent.

To obtain the maximum benefit from passing the token
early, it is also necessary to consider when the token should be
processed relative to data messages when a token message and
data messages are received and available for processing at the
same time. The token should be processed quickly, to maintain
the benefit of accelerating its rotation, but if it is processed
too early, unnecessary retransmissions may be requested, or
excessive overlap in the sending of different participants may
cause packets to be lost due to buffer exhaustion.

The ability to send the token before all multicasts are
completed allows the token to circulate the ring faster, reduces
or eliminates periods in which no participant is sending, and
allows for controlled parallelism in sending. As a result, the
Accelerated Ring protocol is able to simultaneously provide
higher throughput and lower latency than a standard token-
based protocol.

We evaluate the Accelerated Ring protocol in three imple-
mentations: a library-based prototype, a daemon-based proto-
type, and a production implementation in the Spread toolkit.
Spread has existed for over 20 years, serving production
systems of various scales since the late 1990s. The demands
of real applications introduced features that incur significant
costs, such as large group names, support for hundreds of
clients per daemon, support for a large number of simulta-
neous groups with different sets of clients, and multi-group
multicast (the ability to send a single message to all members
of multiple distinct groups, with ordering guarantees across
groups). Therefore, in addition to evaluating the protocol in
this complete production system, we evaluate the protocol in
a simple, library-based prototype to quantify the benefit of
the protocol outside of a complex system, with no additional
overhead for client communication.

However, part of Spread’s success is due to its client-
daemon architecture. This architecture provides a clean sep-
aration between the middleware and the application, allows
a single set of daemons in a data center setup to support
several different applications, and allows open group semantics
(a process does not need to be a member of a group to send
to that group). Because of this, we additionally evaluate the
protocol in a daemon-based prototype that does not incur the
cost of all Spread’s complexity but provides a realistic solution,
including client communication, for a single group.

An evaluation comparing each implementation of the Ac-
celerated Ring protocol to a corresponding implementation of
the original Ring protocol of Totem shows the following re-
sults: Sending messages with 1350 byte payloads, on 1-gigabit
networks, the Spread implementation of the Accelerated Ring
protocol reaches over 920 Mbps in throughput (measuring
only clean application data), essentially reaching network
saturation, and can reduce latency by 45% compared to the
original protocol, while simultaneously increasing throughput

2



by 45-60%. The daemon-based and library-based prototypes
exhibit similar performance. On 10-gigabit networks, the
Spread implementation reaches 2.3 Gbps in throughput, and
can reduce latency by 10-20% while simultaneously increasing
throughput by 10-20%. The daemon-based prototype reaches
3.3 Gbps in throughput, and can reduce latency by 30-35%
while increasing throughput by 25-40%. The library-based pro-
totype reaches 4.6 Gbps in throughput, and can reduce latency
by 20-30% while increasing throughput by 35-50%. Sending
messages with 8850 byte payloads, using UDP datagrams that
are large enough to contain an entire message (but without
using jumbo frames), the maximum throughputs reach 5.3
Gbps for Spread, 6 Gbps for the daemon-based prototype, and
7.3 Gbps for the library-based prototype.

The contributions of this work are:

1) The invention of the Accelerated Ring protocol, a new
ordering protocol that takes advantage of the trade-
offs in modern data center environments.

2) A thorough evaluation of the protocol in a library-
based prototype, a daemon-based prototype, and the
Spread toolkit in 1-gigabit and 10-gigabit networks.

3) The release of the Accelerated Ring protocol as part
of Spread’s open-source code in version 4.4, and
the adoption of this protocol as Spread’s standard
ordering protocol for local area networks and data
center environments.

The remainder of the paper proceeds as follows: Section II
specifies the system model and the services the Accelerated
Ring protocol provides, Section III specifies the Accelerated
Ring protocol, Section IV evaluates the prototype and practical
implementations of the protocol, Section V discusses how this
protocol relates to existing work on total ordering protocols,
and Section VI concludes the paper.

II. SYSTEM AND SERVICE MODEL

The Accelerated Ring protocol provides reliable, totally
ordered multicast and tolerates message loss (including token
loss), process crashes and recoveries, and network partitions
and merges. We assume that Byzantine faults do not occur and
messages are not corrupted.

The Accelerated Ring protocol provides Extended Virtual
Synchrony (EVS) semantics [9], [10]. EVS extends the Virtual
Synchrony (VS) model [11] to partitionable environments.
EVS, just like VS, provides well-defined guarantees on mes-
sage delivery and ordering with respect to a series of config-
urations, where a configuration consists of a set of connected
participants that can communicate among themselves but not
with participants that are not part of that set, and a unique
identifier for the configuration.

The Accelerated Ring protocol provides Agreed and Safe
delivery services. These services are completely and formally
specified in [9], [10], but the most relevant properties are:

1) Agreed delivery guarantees that messages delivered
within a particular configuration are delivered in the
same total order by all members of that configuration.
The total order respects causality.

2) Safe delivery guarantees that if a participant delivers
a message in some configuration, each other member

of the configuration has received that message and
will deliver it, unless it crashes. This property is often
called stability.

Note that the Accelerated Ring protocol can also provide
FIFO and Causal delivery, but the delivery latency is similar
to that of Agreed delivery. Since the guarantees of Agreed
delivery subsume those of FIFO and Causal delivery, these
services are not discussed separately.

The complete Accelerated Ring protocol consists of an
ordering protocol and a membership algorithm. Since the
Accelerated Ring protocol directly uses the membership algo-
rithm of Spread [4], which is based on the Totem membership
algorithm [2], [10], we focus on the ordering protocol, which is
novel, in this paper. However, both components are necessary
to support the above system model and service semantics.

III. ACCELERATED RING PROTOCOL

The Accelerated Ring protocol orders messages by circu-
lating a token around a logical ring composed of the protocol
participants. The token carries the information each participant
needs to correctly assign a sequence number to each message
it sends, and the sequence number specifies the message’s
position in the total order. As discussed in Section I, this
basic mechanism is used in other privilege-based token-based
protocols as well.

The innovation of the Accelerated Ring protocol is that a
participant may continue to multicast for a short time after
passing the token. This reduces or eliminates periods in which
no process is multicasting, allows for controlled parallelism in
multicasting, and reduces the time needed to complete a token
round (a rotation of the token around the ring).

The following description specifies the normal-case oper-
ation of the Accelerated Ring protocol with a static set of
participants. Participant failures and network partitions and
merges are not considered here, as they are handled by the
membership algorithm. The membership algorithm is exactly
the algorithm used by the variant of the Totem Ring proto-
col [2], [10] that is implemented in Spread. This description
assumes that the membership of the ring has been established,
and the first regular token has been sent.

During normal operation, participants take actions in re-
sponse to receiving messages. A participant can receive two
types of messages: token messages and data messages.

A. Token Handling

Token messages carry control information that is used to
establish a correct total order and provide flow control. Token
messages contain the following fields used in the ordering
protocol:

1) seq: The last sequence number claimed by a partici-
pant. Upon receiving a token, a participant is able to
initiate multicast messages with sequence numbers
starting at seq + 1.

2) aru (all-received-up-to): This field is used to deter-
mine the highest sequence number such that each par-
ticipant has received every message with a sequence
number less than or equal to that sequence number.

3



Messages that have been received by all participants
can be delivered with Safe delivery semantics and/or
garbage-collected.

3) fcc (flow control count): The total number of mul-
ticast messages sent during the last token round
(including retransmissions). Participants use this field
when determining the maximum number of messages
they may send in the current round.

4) rtr (retransmission requests): A list of sequence num-
bers corresponding to messages that must be retrans-
mitted (because they were lost by some participant).

Upon receiving the token, a participant multicasts messages
(potentially including both retransmissions and new messages),
updates the token fields, passes the token to the next par-
ticipant, delivers newly deliverable messages, and discards
messages that it no longer needs. The key to the acceleration
of the token is that the token can be updated and passed to the
next participant before a participant finishes multicasting for
the round. This is accomplished by splitting the multicasting
into a pre-token phase and a post-token phase.

1) Pre-token Multicasting: In the pre-token multicasting
phase, a participant determines the complete set of messages
it will multicast during the current token round, including both
any new messages it will initiate and any retransmissions it will
send. This is necessary in order for the participant to correctly
update the token to reflect all the messages it will send in the
current round. However, the participant does not need to send
all of its new messages for the round during this phase.

The participant will first answer any retransmission re-
quests that it can. Specifically, for each retransmission request
in the rtr field of the token it has just received, the participant
will check whether it has the corresponding message. If it does,
it will retransmit that message. Note that all retransmissions
must be sent during the pre-token phase; otherwise, they may
be unnecessarily requested again.

After completing its retransmissions, the participant will
choose the new messages it will initiate in this round (if any)
and multicast some fraction of them to the group (to pass the
token as quickly as possible, this fraction may be 0).

The maximum number of new messages the partici-
pant can multicast in the current round is calculated as
the minimum of the number of application messages it
currently has waiting to be multicast, Personal window,
(Global window − received token.fcc − num retrans),
and (Global aru + Max seq gap − received token.seq).
The Personal window is the maximum number of new
multicast messages that can be sent in a single token round
by a single participant. The Global window is the maximum
number of multicast messages that can be initiated in a single
token round by all participants combined. The token’s fcc field
is used to limit the total number of messages multicast in a
single round (including retransmissions and new messages).
Max seq gap limits the gap between the highest sequence
number that can be assigned to a new message and the
highest sequence number known to have been received by all
participants (which we call the Global aru).

The number of new messages the participant will
actually send in the pre-token phase depends on the

Accelerated window parameter. The Accelerated window
is the maximum number of messages a participant is permitted
to send after passing the token to the next participant in
the ring. The number of new messages a participant will
send in the pre-token phase is therefore the total number
of messages it will send in the current round, minus the
Accelerated window. If the total number of new messages
a participant will send in the current round is less than or
equal to the Accelerated window, it will not send any new
messages in the pre-token phase.

To determine the full set of messages it will send in the
current round, while multicasting only those messages that
are required to be sent before the token, the participant puts
messages into a queue. The participant prepares messages
exactly as if it were going to send them, but instead of
immediately sending messages, the participant places each
message in the queue. If adding a message to the queue causes
the length of the queue to exceed the Accelerated window,
the participant removes the first message from the queue and
multicasts it. The pre-token multicasting phase ends when the
participant has enqueued all the messages it is able to send
in the current round. At this point, the queue will hold either
Accelerated window messages, or all the new messages the
participant will send in this round, if the total number of new
messages it can send in this round is less than or equal to the
Accelerated window.

2) Updating and Sending the Token: Before passing the
token to the next participant, the current token holder updates
each of the token fields.

The seq field is set to the highest sequence number that
has been assigned to a message. For each new message the
participant enqueues during the pre-token multicast phase,
seq is incremented, and the resulting sequence number is
assigned to the message. Since the participant enqueues all
the new messages it will send for the current round during
the pre-token multicast phase, this ensures that the seq field
will reflect all the messages this participant will send in the
current round, including both the pre-token and post-token
multicasting phases.

The aru field is updated according to the rules in [2]. Each
participant tracks its local aru, which is the highest sequence
number such that the participant has received all messages
with sequence numbers less than or equal to that sequence
number. If the participant’s local aru is less than the aru on
the token it receives, it lowers the token aru to its local aru.
If the participant had lowered the token aru in a previous
round, and the received token’s aru has not changed since
the participant lowered it, it sets the token aru equal to its
local aru. If the received token’s aru and seq fields are equal,
and the participant does not need to lower the token’s aru,
the participant increments the aru along with the seq field as
it prepares and enqueues new messages during the pre-token
multicast phase.

The fcc field is also updated as in [2]. The total number
of retransmissions and new messages the participant sent in
the previous round are subtracted from the received token’s
fcc value, and the total number of retransmissions and new
messages the participant is sending in the current round are
added to the received token’s fcc value.

4



The rtr field is updated to remove retransmission requests
that the participant answered in this round and to add requests
for any messages that this participant has missed. The fact
that participants can pass the token before completing their
multicasts for the round slightly complicates retransmission
requests, since the seq field of the received token may include
messages that have not actually been sent yet. In order to
avoid unnecessarily retransmitting messages, the participant
only requests retransmissions for missing messages up through
the value of the seq field on the token it received in the
previous round, rather than the token it just received.

The updated token is then sent to the next participant in
the ring.

3) Post-token Multicasting: During the post-token multi-
cast phase, the participant simply flushes the queue created in
the pre-token multicast phase by multicasting each message re-
maining in the queue. This completes the participant’s sending
for the current round.

4) Delivering and Discarding: As the final step of token
handling, the Accelerated Ring protocol uses the procedure
described in [2], [3] to determine which messages can be
delivered and discarded. A participant can deliver an Agreed
message once it has received and delivered all messages with
lower sequence numbers. Thus, if a participant has received
and delivered all messages up through the seq value of the
received token, it immediately delivers any new messages it
multicasts in the current round.

A participant can deliver a Safe message once it has
received and delivered all messages with lower sequence
numbers and knows that all other participants have received
and will deliver the message (unless they crash). Therefore, the
participant delivers all Safe messages with sequence numbers
less than or equal to the minimum of the aru on the token it
sent this round and the aru on the token it sent last round.
Since every participant had the opportunity to lower the aru
during the round, every participant must have a local aru of at
least the minimum of these two values. The participant discards
each message that meets the requirement for Safe delivery
(after delivering it). Since Safe delivery requires that every
participant has the message, these messages will no longer be
requested for retransmission.

B. Data Handling

Data messages carry application data to be transmitted,
as well as meta-data used for ordering messages. Each data
message contains the following fields:

1) seq: The sequence number of this message. This
corresponds to the message’s position in the total
order.

2) pid: The ID of the participant that initiated this
message.

3) round: The token round in which this message was
initiated.

4) payload: The application data. This is not used or
inspected by the protocol.

Upon receiving a data message, a participant inserts it into
its buffer of messages, ordered by its sequence number. If
this message allows the participant to advance its local aru

(i.e. the sequence number of the message is equal to the local
aru + 1), it delivers all undelivered messages in the order of
their sequence numbers until it reaches a sequence number
higher than the local aru (i.e. a message it has not received)
or a message requiring Safe delivery. Messages requiring Safe
delivery cannot be delivered until the token aru indicates that
they have been received by all participants. To maintain the
total order, no Agreed messages with sequence numbers higher
than that of the first undelivered Safe message can be delivered
until after that Safe message is delivered.

C. Selecting a Message to Handle

In general, token and data messages are handled as they
arrive. However, when messages arrive simultaneously or
nearly simultaneously, it is possible to have both token and
data messages available for processing at the same time. In this
case, the protocol must decide which message type to handle
first. Logically, this is accomplished by assigning different
priorities to the message types. When a message type has high
priority, no messages of the other type will be processed as
long as some message of that type is available for processing.

The key issue is that a participant should not process a
token until it has processed all the data messages reflected in
the last token it processed (or as many as it will receive, if
there is loss). If these messages have not yet been processed,
but were not actually lost, they will be unnecessarily requested.
However, in order to keep the token moving as quickly as
possible and maximize performance, the token should be
processed as soon as it is safe to do so without causing
unnecessary retransmissions. Note that decisions about when
to process messages of different types can impact performance
but do not affect the correctness of the protocol.

A participant always gives data messages high priority
after processing a token message. However, two different
methods may be used for deciding when to raise the priority
of token messages again after processing the token for a given
round. In the first method, a participant gives the token high
priority as soon as it processes any data message its immediate
predecessor in the ring sent in the next token round (which is
indicated by the round field of the data message). In the second
method, a participant waits to give the token high priority until
it processes a data message that its immediate predecessor sent
in the next round after having sent the token for that round
(i.e. during its post-token multicast phase). A more detailed
discussion of these methods can be found in [12].

If each participant is able to process every message im-
mediately as it arrives, the priority switching method does
not have an impact. However, when participants can receive
the token before they have finished processing all previously
received messages, the two priority-switching methods offer
different performance trade-offs. The first maximizes the speed
with which the token can circulate the ring. The second slows
the token slightly to reduce the number of unprocessed data
messages that can build up at a participant but still maintains
the acceleration of the token by processing it at its correct
place in the stream of messages (after messages sent before it,
but before messages known to have been sent after it).

5



Fig. 1. Agreed delivery latency vs. throughput, 1-gigabit network

D. Implementation Considerations

Our implementations of the Accelerated Ring protocol use
IP-multicast to transmit data messages to all participants and
UDP unicast to pass the token from one participant to the next
in the ring. We use IP-multicast since it is generally available
in the local area networks and data center environments for
which the protocol is designed, especially when building
infrastructure. However, if IP-multicast is not available, unicast
can be used to construct logical multicast; this capability is
available as an option in Spread.

For Spread and the daemon-based prototype, daemons
communicate with local clients using IPC sockets. Spread also
supports remote clients that connect via TCP, but this is not
recommended for local area networks, where it is best to co-
locate Spread daemons and clients. Other work has reported
that Spread’s maximum throughput is less than 200 Mbps on
a 1-gigabit network [13]; such low throughput is likely the
result of a setup in which TCP connections between Spread
daemons and clients became the bottleneck.

In Section III-C, we describe switching priority between
data messages and token messages. In practice, we accomplish
this by sending token and data messages on different ports and
using different sockets for receiving the two message types.
Thus, when data messages have high priority, we do not read
from the token receiving socket unless no data message is
available, and vice versa.

When evaluating both prototypes, we use the first, more
aggressive method for giving the token high priority, since this
gives the best performance when the flow control parameters
are properly tuned. However, when evaluating Spread, we use
the second, less aggressive method, since this is the method
implemented in the open-source Spread release. We chose to
implement this method in Spread because it is less sensitive
to misconfiguration and provides more stable, predictable per-
formance, which is important for production systems used in
a wide variety of environments. When the accelerated window
is set to zero at all participants, the second method is identical
to the original Ring protocol, while the first method may still
accelerate the token by processing it as early as possible.

Fig. 2. Safe delivery latency vs. throughput, 1-gigabit network

IV. EVALUATION

We experimentally evaluate the performance profile of the
Accelerated Ring protocol and compare it to the performance
of the original Ring protocol of Totem [2], [3]. We evaluate
both protocols in library-based and daemon-based prototype
implementations as well as in complete production implemen-
tations in the Spread toolkit.

A. Benchmarks

All benchmarks use Dell PowerEdge R210 II servers,
with Intel Xeon E3-1270v2 3.50 GHz processors, 16 GB of
memory, and 1-gigabit and 10-gigabit Ethernet connections.
The servers were connected using a 1-gigabit Catalyst 2960
Cisco switch and a 10-gigabit 7100T Arista switch.

To evaluate the performance profile of each protocol, we
ran the system at different throughput levels, ranging from
100 Mbps up to the maximum throughput of the system for
each protocol and implementation. At each throughput level,
we measured the average latency to deliver a message for both
Agreed and Safe delivery.

These experiments were run on 8 servers. For Spread and
the daemon-based prototype, each server ran one daemon, one
sending client that injected messages into the system at a fixed
rate, and one receiving client. Each sending client sent the
same number of messages, and each receiving client received
all the messages sent by all sending clients. For the library-
based prototype, each server ran a single process that both
injected and received messages.

For the library-based prototype, we controlled throughput
by adjusting the personal window; smaller personal windows
result in lower throughput (corresponding to the situation
where each process has only a small number of new messages
to send each time it receives the token). For the daemon-based
prototype and Spread, we chose the smallest personal window
that allowed the system to reach its maximum throughput and
the accelerated window that resulted in the highest throughput
for that particular personal window, as this gave the best overall
system performance.

1) 1-gigabit Experiments: For these experiments, all data
messages contained a 1350 byte payload. This size allows the
entire message to fit in a single IP packet with a standard

6



Fig. 3. Agreed delivery latency vs. throughput, 10-gigabit network

Fig. 4. Throughput vs agreed delivery latency for 1350 byte messages and
8850 byte messages, 10-gigabit network

1500 byte MTU, while allowing sufficient space for protocol
headers. Spread requires large headers to support features
required by users, such as descriptive group and sender names.

The results of the 1-gigabit experiments are shown in
Figures 1 and 2. Figure 1 shows the relationship between
throughput and latency for Agreed delivery, while Figure 2
does the same for Safe delivery. From these figures, we can
see a clear difference between the profiles of the original
Ring protocol and the Accelerated Ring protocol, across all
implementations. When Spread uses the original protocol, its
latency for Agreed delivery is at least 400 microseconds, even
for the lowest throughput level tested (100 Mbps). In contrast,
with the Accelerated Ring protocol, Spread is able to reach
400 Mbps throughput with latency below 400 microseconds.
At 900 Mbps, Spread’s latency is under 1.2 milliseconds
using the accelerated protocol, which is about the same as the
latency for the original protocol at 400 Mbps. With the original
protocol, Spread supports up to 500 Mbps, with latency
around 1.3 milliseconds, before latency begins to climb rapidly.
The accelerated protocol is able to support 800 Mbps with
latency around 720 microseconds, simultaneously improving
throughput by 60% and latency by over 45%.

We also see that the accelerated protocol improves max-
imum throughput compared to the original protocol. Using
the accelerated protocol, Spread is able to reach over 920
Mbps. Since we measure only clean application data (payload),
and Spread adds substantial headers to each message, this is
practically saturating the 1-gigabit network.

Fig. 5. Safe delivery latency vs. throughput, 10-gigabit network

Fig. 6. Throughput vs Safe delivery latency for 1350 byte messages and
8850 byte messages, 10-gigabit network

Safe delivery shows a similar overall pattern. For all
implementations, the original protocol is able to support up to
600 Mbps before latency begins to rise sharply, and latency is
between 3.7 and 4.7 milliseconds at this point. The accelerated
protocol supports 800 Mbps with latency around 2 millisec-
onds, improving throughput by over 30% and latency by over
45% at the same time. The accelerated protocol achieves
throughput over 900 Mbps in all implementations with latency
comparable to that of the original protocol at 600 Mbps.

On 1-gigabit networks, processing is fast relative to the
network, so the differences between the three implementations
(library-based and daemon-based prototypes and Spread) are
generally small. However, for Agreed delivery, we see that
Spread has distinctly higher latency than the prototypes when
the original protocol is used. This is due to the fact that, in the
original protocol, all received data messages must be processed
before the token, and when Agreed delivery is used, these
messages will generally be delivered to clients immediately
upon being processed. Since delivery is relatively expensive in
Spread, due to the need to analyze group names and send to
the correct clients, this slows down the protocol and increases
latency. This performance difference between Spread and the
prototypes does not appear for Safe delivery, since delivering
to clients is not on the critical path when that service is
used. However, Safe delivery provides a stronger service than
Agreed delivery and is much more expensive in terms of
overall latency. In order to obtain the latency advantage of
Agreed delivery, messages must be delivered to clients as soon
as they are received in order. The accelerated protocol is able

7



to maintain the latency advantage for Agreed delivery while
moving delivering to clients off the critical path by allowing
the token to be processed before all received messages have
been processed. Therefore, the difference between Spread and
the other implementations essentially disappears when the
accelerated protocol is used.

2) 10-gigabit Experiments: Figures 3 and 5 show perfor-
mance profiles from the same experiments shown in Figures 1
and 2, but on a 10-gigabit network. As in the 1-gigabit
experiments, we can see the benefit of the Accelerated Ring
protocol. For Agreed delivery, using the original protocol,
Spread can provide throughput up to about 1 Gbps before the
protocol starts to reach its limits and latency climbs. Its average
latency at this throughput is 385 microseconds. Using the
accelerated protocol, Spread can provide 1.2 Gbps throughput
with an average latency of about 310 microseconds, for a
simultaneous improvement of 20% in both throughput and
latency. The maximum throughput Spread reaches with latency
under 1 millisecond using the original protocol is 1.6 Gbps, but
using the accelerated protocol, Spread is able to reach 2 Gbps
with similar latency, for a 25% improvement in throughput.

Unlike on 1-gigabit networks, on 10-gigabit networks,
processing is slow relative to the network. Therefore, we see
that the differing overheads of the different implementations
have a significant impact on performance. While Spread can
support 1.2 Gbps throughput with average latency around
310 microseconds using the accelerated protocol, the daemon-
based prototype supports up to 2.9 Gbps with the same latency,
and the library-based prototype reaches 3.5 Gbps at that
latency.

Because processing is a bottleneck for Spread on 10-
gigabit networks, we consider the prototype implementations
to see the full power of the protocol. For the daemon-based
prototype, the original protocol supports 2 Gbps with latency
around 390 microseconds. The accelerated protocol supports
2.8 Gbps throughput with latency around 265 microseconds,
for a simultaneous improvement of 40% in throughput and
over 30% in latency.

The performance profile for Safe delivery is similar but
with higher overall latencies for the stronger service, as well as
slightly higher overall throughputs, due to the fact that message
delivery is not in the critical path. Using the original protocol,
Spread supports 1.1 Gbps throughput with an average latency
of 930 microseconds; using the accelerated protocol, Spread
can support the same throughput with 25% lower latency
(about 700 microseconds), achieve 20% higher throughput
with the same latency (about 1.35 Gbps), or improve both
throughput and latency by about 10% each (with latency of
about 810 microseconds for 1.2 Gbps throughput).

As in the results for Agreed delivery, the difference be-
tween the protocols is even clearer for the prototype im-
plementations. For the daemon-based prototype, the original
protocol supports 2.5 Gbps throughput with 1.5 millisecond
latency, while the accelerated protocol supports 3.1 Gbps with
980 microsecond latency, improving throughput by 25% and
latency by 35% at the same time.

Using the accelerated protocol, Spread achieves a maxi-
mum throughput of 2.3 Gbps (a 35% improvement over the
original protocol’s maximum of 1.7 Gbps), the daemon-based

prototype reaches 3.3 Gbps, and the library-based prototype
reaches 4.6 Gbps.

It is interesting to note that while the accelerated protocol
always provides lower latency than the original protocol for
the same throughput in 1-gigabit experiments or for Agreed
delivery, Figure 7 shows that there is a slightly different
trade-off on 10-gigabit networks for Safe delivery. When the
system’s aggregate throughput is very low, the original protocol
provides better latency than the accelerated protocol. This is
due the fact that raising the token aru can cost up to an extra
round in the accelerated protocol (because the aru typically
cannot be raised in step with the token’s seq value). At low
throughputs, token rounds are already fast (since relatively
few messages are being sent), so the accelerated protocol’s
ability to speed up each round is reduced, and the extra round
becomes significant. At 100 Mbps, or 1% of the network’s
capacity, Spread’s average latency is 620 microseconds with
the accelerated protocol, which is close to 20% higher than
the original protocol’s latency of 520 microseconds. However,
once throughput reaches 4-5% of the network’s capacity (400-
500 Mbps), the accelerated protocol consistently provides
lower latency.

Fig. 7. Safe delivery latency for low throughputs, 10-gigabit network

3) 10-gigabit Experiments with Larger UDP Datagrams:
On 10-gigabit networks, processing power becomes the limit-
ing factor, preventing both the original Ring protocol and the
Accelerated Ring protocol from fully utilizing the network.
If higher throughput is needed, one approach is to amortize
processing costs over larger message payloads. Spread includes
a built-in ability to pack small messages into a single protocol
packet, but the size of a protocol packet is limited to fit
within a single standard 1500 byte MTU; large messages are
fragmented into multiple protocol packets. However, we can
use UDP datagrams of up to 64 kilobytes, allowing message
fragmentation and reassembly to be done at the kernel level,
rather than at the daemon level, with the trade-off that the loss
of a single frame results in the loss of the whole datagram.

To evaluate the performance profile of the Accelerated
Ring protocol when processing costs are amortized over larger
payloads, we ran the same experiments with message payloads
of 8850 bytes and UDP datagrams of up to 9000 bytes. This
choice is inspired by the 9000 byte jumbo frame size, allowing
the same 150 bytes for headers as in the experiments with 1350
byte payloads. However, we chose not to use jumbo frames at
the network level to avoid restricting the applicability to only

8



deployments in which they are available, although using jumbo
frames may improve performance further.

Figures 4 and 6 compare the performance profiles of the
Accelerated Ring implementations using 1350 byte payloads
(which are the same as in Figures 3 and 5) to the profiles
when payloads of 8850 bytes are used. For both Agreed and
Safe delivery, larger messages allow the protocol to reach con-
siderably higher maximum throughputs. For Agreed delivery,
Spread reaches 5.3 Gbps, compared with 2.1 Gbps using 1350
byte messages, for an improvement of 150%. The maximum
throughput of the daemon-based prototype improves 87% from
3.2 Gbps to 6 Gbps, while that of the library-based protocol
improves 58%, from 4.6 Gbps to 7.3 Gbps. Because the benefit
of larger messages comes from amortizing processing costs,
we see the biggest improvements when processing overhead
is highest. As can be seen in Figure 6, the improvements are
similar for Safe delivery.

B. Discussion

The evaluation clearly shows the benefit of the Accelerated
Ring protocol over a standard token-based protocol. Using
the accelerated protocol, Spread, with all the overhead of a
real system, is able to practically saturate a 1-gigabit network.
In fact, it achieves similar or better network utilization than
was reported in 2004 on 100-megabit Fast Ethernet [8], with
excellent latency.

Using larger UDP datagrams (but not jumbo frames), a
library-based prototype is able to achieve about 73% network
utilization on a 10-gigabit network. This is comparable to
the original Totem Ring protocol, which was benchmarked
on a 10-megabit network in a similar way to our library-
based implementation in [2], [3]. Thus, a relatively simple
but powerful protocol change, plus the use of larger UDP
datagrams, allows the same core protocol to scale three orders
of magnitude over 20 years.

The current version of Spread uses UDP datagrams that fit
in a single frame with a 1500 byte MTU. While we are not
considering using jumbo frames in the default configuration,
since these are limiting for many deployments, allowing larger
UDP datagrams on 10-gigabit networks may be beneficial.
A drawback of UDP datagrams that span multiple network
frames is that the loss of a single frame results in the loss
of the entire datagram. However, using a protocol with good
flow control, like the Accelerated Ring protocol, in a stable
local area network, like those in data center environments, we
expect loss to be small. Therefore, larger UDP datagrams may
be a reasonable price to pay for applications that need both
high throughput and all of the features of Spread. Currently,
larger UDP datagrams may be used by changing a single
constant parameter and recompiling Spread, but including this
capability as the default configuration option in future releases
warrants further experimentation and experience.

V. RELATED WORK

The Accelerated Ring protocol builds on a large body of
work on reliable, totally ordered multicast. Existing protocols
vary in the techniques they use to achieve total ordering, as
well as the precise semantics they guarantee.

One of the earliest token-based protocols is the protocol
of Chang and Maxemchuk [14]. This protocol exemplifies a
token-based moving sequencer protocol under the classification
of Défago et al. discussed in Section I. It orders messages by
passing a token around a logical ring of processes; the process
holding the token is responsible for assigning a sequence
number to each message it receives and sending that sequence
number to the other processes. The Pinwheel protocols [15]
introduce several performance optimizations to the Chang and
Maxemchuk protocol, including new mechanisms for deter-
mining message stability.

As previously discussed, the Accelerated Ring protocol is
closely related to the Totem Ring protocol [2], [3]. Spread’s
original protocol is a variant of Totem, and the Accelerated
Ring protocol directly uses the variant of the Totem member-
ship algorithm implemented in Spread.

While we chose a token-based approach for its simplicity
and ability to provide flexible semantics, other total ordering
mechanisms exist. Défago et al. identify sequencer, moving
sequencer, privilege-based, communication history, and des-
tinations agreement as the five main mechanisms for total
ordering and survey algorithms of each type. We highlight a
few influential examples here.

The ISIS toolkit [16] was one of the first practical group
communication systems and was used in air traffic control
systems and the New York Stock Exchange, among many other
places. ISIS is based on the Virtual Synchrony model and uses
vector timestamps to establish causal ordering and a sequencer-
based protocol to establish total ordering.

In the Trans protocol [17], used by the Transis system [18],
processes attach positive and negative acknowledgments to
messages they multicast. The processes then use these ac-
knowledgments, along with per-process sequence numbers,
to build a directed acyclic graph over the messages, which
determines the order in which they must be delivered.

Ring Paxos [13] is based on the Paxos algorithm [19] and
orders messages by executing a series of consensus instances
to assign sequence numbers to messages. It achieves high per-
formance by using efficient communication patterns in which
messages are forwarded to a coordinator that multicasts them
to all processes and acknowledgments are forwarded around a
logical ring composed of a quorum of processes. Multi-Ring
Paxos [20] scales the throughput of Ring Paxos by running
multiple rings that order messages independently. Processes
that need to receive messages from more than one ring use a
deterministic merge function to obtain a total ordering over all
messages.

These alternative approaches have also been used to build
other successful practical systems that can achieve good perfor-
mance on modern networks. JGroups [21] is a popular, highly-
configurable messaging toolkit that includes a total ordering
protocol based on a sequencer (as well as less expensive FIFO
ordering). A 2008 performance evaluation reports that, with an
8-machine cluster on a 1-gigabit network, the FIFO multicast
protocol achieves 405 Mbps throughput with 1000 byte mes-
sages and reaches 693 Mbps with 5000 byte messages [22].
Using the same setup described in Section IV, we measured the
total ordering protocol as reaching 650 Mbps on a 1-gigabit
network with 1350 byte messages (with the FIFO protocol

9



reaching 880 Mbps) and up to 3 Gbps on a 10-gigabit network
(with the FIFO protocol reaching over 4 Gbps).

Isis2 [23], [24] is a cloud computing library that, among
other capabilities, includes totally ordered multicast using a
sequencer-based protocol, stronger safety guarantees using
Paxos, and a weaker, cheaper FIFO multicast. Isis2 allows
users to work with replicated distributed objects (automati-
cally maintaining consistent copies at all processes using its
multicast primitives), and provides other useful features, such
as a built-in distributed hash table and support for out-of-band
file transfer.

U-Ring Paxos [25] adapts Ring Paxos and Multi-Ring
Paxos to work without IP-multicast by propagating both ac-
knowledgments and the content being ordered around the
ring. While providing efficient (logical) multicast in the ab-
sence of IP-multicast is important for certain environments
(e.g. WANs), significant effort has been spent on optimizing
IP-multicast and allowing it to support large numbers of
groups; our experience has shown that it is reasonable to
take advantage of its performance in data center environments,
especially when building infrastructure. Using a single ring,
U-Ring Paxos is reported to reach over 900 Mbps on 1-
gigabit networks in configurations with 3 acceptors sending
8 kilobyte messages [25], which matches our measurements
in the same 8-machine setup described in Section IV. When
sending 1350 byte messages (but allowing batching), U-Ring
Paxos reaches over 750 Mbps with a latency profile similar to
that of the original Ring protocol for Safe delivery. On a 10-
gigabit network, we measure U-Ring Paxos as reaching close
to 1.5 Gbps with 1350 byte messages (with batching). Higher
throughput may be achieved by taking advantage of Multi-
Ring Paxos’s ability to run multiple rings in parallel, but this
technique requires additional processing resources.

It is important to note that while all of the protocols
discussed here provide total ordering, there are subtle but
meaningful differences in the semantics they provide. We
designed the Accelerated Ring protocol to maintain the flexible
Extended Virtual Synchrony semantics that our experience has
shown to be useful in supporting a wide variety of applications.
Paxos-like approaches lack this flexibility; they provide a
service similar to Safe delivery but cannot provide weaker
services for a lower cost, and they cannot allow progress in
multiple partitions. In addition, the total order of Paxos-based
approaches does not respect FIFO ordering if a process can
submit a message for ordering before learning that its previous
messages were ordered.

While sequencer-based approaches can provide a variety of
service levels, their handling of network partitions is typically
limited, preventing them from cleanly merging partitioned
members. Members that do not belong to a primary component
typically need to rejoin as new members. We focus on token-
based approaches in part because they can naturally provide
rich semantics in a partionable model.

VI. CONCLUSION

We have presented the Accelerated Ring protocol, a new
protocol for totally-ordered multicast that is designed to take
advantage of the trade-offs of 1-gigabit and 10-gigabit net-
works. We show that the Accelerated Ring protocol signif-

icantly improves both throughput and latency compared to
standard token-based protocols, while maintaining the correct-
ness and attractive properties of such protocols. The Acceler-
ated Ring protocol is implemented in open-source prototypes
suitable for research. A production implementation has been
adopted as the default protocol for local area networks and
data center environments in the Spread toolkit.

REFERENCES

[1] X. Défago, A. Schiper, and P. Urbán, “Total order broadcast and
multicast algorithms: Taxonomy and survey,” ACM Comput. Surv.,
vol. 36, no. 4, pp. 372–421, Dec. 2004.

[2] Y. Amir, L. Moser, P. Melliar-Smith, D. Agarwal, and P. Ciarfella,
“Fast message ordering and membership using a logical token-passing
ring,” in Distributed Computing Systems, 1993., Proceedings the 13th
International Conference on, May 1993, pp. 551–560.

[3] Y. Amir, L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, and
P. Ciarfella, “The totem single-ring ordering and membership protocol,”
ACM Trans. Comput. Syst., vol. 13, no. 4, pp. 311–342, Nov. 1995.

[4] Spread Concepts LLC, “The Spread Toolkit.” [Online]. Available:
http://www.spread.org

[5] “The Corosync cluster engine.” [Online]. Available:
http://corosync.github.io/corosync

[6] “Appia communication framework.” [Online]. Available:
http://appia.di.fc.ul.pt

[7] H. Miranda, A. Pinto, and L. Rodrigues, “Appia, a flexible protocol
kernel supporting multiple coordinated channels,” in Distributed Com-
puting Systems, 2001. 21st International Conference on., Apr 2001, pp.
707–710.

[8] Y. Amir, C. Danilov, M. Miskin-Amir, J. Schultz, and J. Stanton,
“The spread toolkit: Architecture and performance,” Johns Hopkins
University, Tech. Rep. CNDS-2004-1, 2004.

[9] L. Moser, Y. Amir, P. Melliar-Smith, and D. Agarwal, “Extended virtual
synchrony,” in Distributed Computing Systems, 1994., Proceedings of
the 14th International Conference on, Jun 1994, pp. 56–65.

[10] Y. Amir, “Replication using group communication over a partitioned
network,” Ph.D. dissertation, Hebrew University of Jerusalem, 1995.

[11] K. Birman and T. Joseph, “Exploiting virtual synchrony in distributed
systems,” in Proceedings of the Eleventh ACM Symposium on Operating
Systems Principles, ser. SOSP ’87. New York, NY, USA: ACM, 1987,
pp. 123–138.

[12] A. Babay, “The accelerated ring protocol: Ordered multicast for modern
data centers,” Master’s thesis, Johns Hopkins University, May 2014.

[13] P. Marandi, M. Primi, N. Schiper, and F. Pedone, “Ring paxos: A high-
throughput atomic broadcast protocol,” in Dependable Systems and
Networks (DSN), 2010 IEEE/IFIP International Conference on, June
2010, pp. 527–536.

[14] J.-M. Chang and N. F. Maxemchuk, “Reliable broadcast protocols,”
ACM Trans. Comput. Syst., vol. 2, no. 3, pp. 251–273, Aug. 1984.

[15] F. Cristian and S. Mishra, “The pinwheel asynchronous atomic broad-
cast protocols,” in Autonomous Decentralized Systems, 1995. Proceed-
ings. ISADS 95., Second International Symposium on, Apr 1995, pp.
215–221.

[16] K. Birman, A. Schiper, and P. Stephenson, “Lightweight causal and
atomic group multicast,” ACM Trans. Comput. Syst., vol. 9, no. 3, pp.
272–314, Aug. 1991.

[17] P. Melliar-Smith, L. Moser, and V. Agrawala, “Broadcast protocols for
distributed systems,” Parallel and Distributed Systems, IEEE Transac-
tions on, vol. 1, no. 1, pp. 17–25, Jan 1990.

[18] Y. Amir, D. Dolev, S. Kramer, and D. Malki, “Transis: a communication
subsystem for high availability,” in Fault-Tolerant Computing, 1992.
FTCS-22. Digest of Papers., Twenty-Second International Symposium
on, July 1992, pp. 76–84.

[19] L. Lamport, “The part-time parliament,” ACM Trans. Comput. Syst.,
vol. 16, no. 2, pp. 133–169, May 1998.

[20] P. Marandi, M. Primi, and F. Pedone, “Multi-ring paxos,” in Dependable
Systems and Networks (DSN), 2012 42nd Annual IEEE/IFIP Interna-
tional Conference on, June 2012, pp. 1–12.

10



[21] “JGroups - The JGroups Project.” [Online]. Available:
http://www.jgroups.org

[22] B. Ban, “Performance tests JGroups 2.6.4,” August 2008. [Online].
Available: http://www.jgroups.org/perf/perf2008/Report.html

[23] K. Birman, “Isis2 Cloud Computing Library.” [Online]. Available:
http://isis2.codeplex.com

[24] K. Birman and H. Sohn, “Hosting dynamic data in the cloud with Isis2
and the Ida DHT,” in ACM Workshop on Timely Results in Operating
Systems (TRIOS), at SOSP, 2013.

[25] S. Benz, “Unicast multi-ring paxos,” Master’s thesis, Università della
Svizzera Italiana, 2013.

11


