
Network-Attack-Resilient Intrusion-Tolerant
SCADA for the Power Grid

Amy Babay∗, Thomas Tantillo∗, Trevor Aron, Marco Platania, and Yair Amir
Johns Hopkins University — {babay, tantillo, taron1, yairamir}@cs.jhu.edu

AT&T Labs — {platania}@research.att.com
Spread Concepts LLC — {yairamir}@spreadconcepts.com

Technical Report CNDS-2017-2 - December 2017
http://www.dsn.jhu.edu

Abstract—As key components of the power grid infrastructure,
Supervisory Control and Data Acquisition (SCADA) systems are
likely to be targeted by nation-state-level attackers willing to
invest considerable resources to disrupt the power grid. We
present Spire, the first intrusion-tolerant SCADA system that
is resilient to both system-level compromises and sophisticated
network-level attacks and compromises. We develop a novel
architecture that distributes the SCADA system management
across three or more active sites to ensure continuous availability
in the presence of simultaneous intrusions and network attacks.
A wide-area deployment of Spire, using two control centers and
two data centers spanning 250 miles, delivered nearly 99.999% of
all SCADA updates initiated over a 30-hour period within 100ms.
This demonstrates that Spire can meet the latency requirements
of SCADA for the power grid.

I. INTRODUCTION

Supervisory Control and Data Acquisition (SCADA) sys-
tems form the monitoring and control backbone of the power
grid. SCADA systems allow power grid operators to monitor
the status of the grid, detect abnormal conditions, and issue
control commands to manage the physical equipment in the
power substations. It is critical to ensure that SCADA systems
are continuously available and operating correctly: failures and
downtime can have severe consequences, including equipment
damage and extended blackouts.

As key components of critical infrastructure, SCADA sys-
tems are likely to be targeted by nation-state-level attackers
willing to invest considerable resources to disrupt the power
grid. Moreover, as SCADA systems move to use IP networks
to take advantage of their cost benefits and implement smart-
grid capabilities, the traditional assumptions that these systems
are air-gapped and inaccessible to outside attackers no longer
hold. Recent reports show that SCADA systems are increas-
ingly subject to attack [1].

While today’s SCADA systems employ fault-tolerance to
maintain operation when parts of the system fail, they were
never designed to withstand malicious attacks. As shown
in Figure 1, state-of-the-art SCADA systems typically use
primary-backup approaches to provide disaster recovery capa-
bilities. Specifically, a hot-backup of the central control server
(the SCADA master) can take over immediately if the primary

* Equal Contribution

October	2016	 Tan0llo	GBO	 64	

Substa'on	

RTU	

Physical	
Equipment	

Wide	Area	Network	

Substa'on	

RTU	

Physical	
Equipment	

SCADA	Master	
Primary	

SCADA	Master	
Hot	Standby	

HMI	

Primary	Control	Center	
LAN	

SCADA	Master	
Primary	

SCADA	Master	
Hot	Standby	

HMI	

Cold-Backup	Control	Center	
LAN	

Fig. 1. Modern SCADA architecture using two control centers. A hot-backup
SCADA master is used within each control center, and the cold-backup control
center can be activated if the primary control center fails.

SCADA master fails, and in many SCADA systems, a cold-
backup control center can be activated within a couple of
hours if the primary control center fails. The SCADA master
is responsible for collecting and logging data from Remote
Terminal Units (RTUs) and Programmable Logic Controllers
(PLCs), presenting the current status of the infrastructure to a
human operator via the Human-Machine Interface (HMI), and
issuing control commands to the RTUs and PLCs. The RTUs
and PLCs connect to the physical equipment in the power
substations to translate signals (e.g. current, phase, voltage)
into digital data, send status updates to the control center via
a wide-area network, and control the physical devices based on
supervisory commands from the SCADA master. To provide
real-time monitoring and control capabilities, SCADA systems
for the power grid must deliver device status updates and
supervisory commands within 100-200ms [2], [3].

While the current primary-backup architectures provide
sufficient resilience to overcome benign failures, they are not
adequate to cope with the hostile environments that SCADA
systems are now being exposed to. In these environments,
SCADA systems will need to overcome both network-level
and system-level attacks.

For example, a sophisticated network attack can take the
primary control center offline at the time of the attacker’s
choosing, disrupting its ability to communicate with the field

1



substations and incurring system downtime. Such network at-
tacks cannot be overcome using a primary-backup architecture.
A cold-backup approach inherently incurs downtime to bring
the backup online. When a control center fails as the result of
a benign problem, the downtime incurred while activating the
backup is likely to occur at a non-critical time, and therefore
is considered acceptable today; however, a malicious attack
can be intentionally launched at the worst possible time (e.g.
during a major snowstorm or during a coordinated large-scale
attack in multiple domains). A hot-backup approach (where
the backup control center is always active and ready to take
over) is subject to a “split-brain” problem: if the primary and
backup cannot communicate (either due to benign network
failures or malicious network attacks), they will both attempt
to assume the role of the primary and can issue conflicting
control commands, leading to incorrect behavior.

In addition, system-level compromises of the SCADA
servers can have devastating consequences. A compromised
SCADA master can issue malicious commands to damage
physical power grid components and can manipulate monitor-
ing information to prevent operators from correcting or even
being able to observe the problem.

We present Spire, the first intrusion-tolerant SCADA system
that simultaneously withstands attacks and compromises at
both the system level and the network level. To overcome
system-level compromises of the SCADA masters, we build
on existing work on intrusion-tolerant replication, combined
with proactive recovery and diversity, to enable the system to
continue to work correctly as long as no more than a certain
fraction of the SCADA master replicas are compromised.

However, none of the existing work on intrusion-tolerant
replication is resilient to the network attacks we consider. Our
recent experience with a red-team attack of the Spire system
shows that the network is commonly the first target for attacks:
if the system can be disabled by disrupting the communication
between its components, there is no need for domain-specific
attacks that employ specialized knowledge of the power grid.

We demonstrate that the two-control-center architectures
used by power companies today are not sufficient to provide
resilience to network attacks: at least three active sites are
required. We develop a novel architecture that distributes
SCADA master replicas across three or more sites to ensure
continuous availability in the presence of simultaneous system
intrusions and network attacks. Even if an attacker is able
to target and isolate a control center from the rest of the
network (as sophisticated network attacks are capable of [4],
[5]), the system will continue to operate correctly, as long as
the number of compromises in the rest of the system does not
exceed the tolerated threshold.

To make our architecture viable for deployment, it must
fit the current power company model that budgets for and
deploys no more than two control centers that can control
physical devices in the substations. Our novel architecture
allows the two control centers to be augmented with one or
more commodity data centers that do not need to control field
devices, providing the same resilience at a feasible cost.

A wide-area deployment of Spire, using two control centers
and two data centers, spanning 250 miles (similar to large US
power grids), delivered nearly 99.999% of all SCADA updates
initiated over a 30-hour period within 100ms. Out of 1.08
million updates, only 13 took over 100ms, and only one of
those 13 exceeded 200ms. This demonstrates that Spire can
meet the latency requirements of SCADA for the power grid.

The primary contributions of this work are:
• We invent the first intrusion-tolerant SCADA system

that simultaneously addresses system compromises and
network attacks. To support this expanded threat model,
we develop a novel architecture that distributes SCADA
master replicas across the required three or more active
geographic sites.

• We extend the architecture to leverage commodity data
centers (that may not be able to control field devices)
to avoid constructing additional power company control
centers, reducing costs and making the architecture viable
for deployment.

• We deploy and evaluate Spire on a wide-area network
with a geographic footprint similar to that of large U.S.
power grids. We show that the system can meet the
stringent latency requirements of the power grid.

II. SPIRE APPROACH OVERVIEW

We introduce a new SCADA system architecture that is re-
silient to simultaneous system compromises and sophisticated
network attacks. At the system level, we use a version of the
Prime intrusion-tolerant replication engine [6], [7] to overcome
compromises of the SCADA master. At the network level, we
combine the Spines intrusion-tolerant network [8], [9] with
a novel architecture for distributing replicas across multiple
geographic sites, such that even if one site is disconnected
from the rest of the network, the system is able to continue
operating correctly. Our solution protects the system over
a long lifetime using proactive recovery and diversity, and
provides strict latency and reliability guarantees that meet the
demands of SCADA systems for the power grid.

A. Intrusion-Tolerant Replication

Spire uses intrusion-tolerant replication to overcome com-
promises of the SCADA master. Intrusion-tolerant replication
ensures that each correct replica maintains an identical copy
of the system state, even when up to a threshold number f of
the replicas are compromised and can exhibit Byzantine [10]
(arbitrary) behavior. Intrusion-tolerant replication protocols
can overcome up to f compromised replicas by using 3f + 1
total replicas [11].

While all intrusion-tolerant replication protocols guaran-
tee safety (consistency) and liveness (each valid update is
eventually executed), only a subset of protocols guarantee
performance under attack (e.g. [7], [12], [13], [14], [15]).
Spire uses a version of the Prime intrusion-tolerant replication
engine [7] because it provides strong latency guarantees for
each update. Specifically, Prime guarantees that every update
is executed within a bounded delay after it is introduced,

2



making it an excellent fit for the stringent latency requirements
of SCADA systems for the power grid. Note, however, that
Spire could use any intrusion-tolerant replication protocol that
provides the necessary performance (timeliness) guarantees.

B. Diversity

Intrusion-tolerant replication protocols only guarantee cor-
rectness as long as the number of compromised replicas does
not exceed the tolerated threshold f . However, if all replicas
in the system are identical copies of one another, an attacker
who successfully exploits one replica can simply reuse the
same exploit to compromise all of the replicas in the system.

To prevent an attacker from gaining control of more
than f replicas, the system must ensure that the replicas
present diverse attack surfaces. Diversity can be achieved
using approaches such as N-version programming [16], [17],
operating system diversity [18], or software diversification at
compilation or run time [19], [20], [21], [22]. Spire uses the
MultiCompiler [19], which employs techniques such as stack
padding, no-op insertion, equivalent instruction substitution,
and function reordering to diversify the code layout of an
application. The MultiCompiler uses a 64-bit random seed
to generate diversity from a large entropy space, making it
unlikely that the same attack on the codebase will successfully
compromise any two distinct variants.

C. Proactive Recovery

Even if replicas are sufficiently diverse, given enough time,
a dedicated attacker will eventually be able to craft enough dis-
tinct attacks to compromise more than f replicas. Therefore, it
is necessary to use proactive recovery to ensure survivability
over the lifetime of the system (which can be years for SCADA
systems) [11], [23].

In proactive recovery, each replica is periodically brought
down and restarted from a known clean state (removing any
compromises) with a new diverse variant of the software that
is with high probability different from all past and future vari-
ants. This makes the job of the attacker significantly harder,
as they now must simultaneously compromise more than f
replicas within a limited time window. To maintain availability
in the presence of both f intrusions and k simultaneous
proactive recoveries, a system with 3f+1 replicas (e.g. Prime)
must be extended to use 3f + 2k + 1 total replicas [24].

D. Intrusion-Tolerant Network

While intrusion-tolerant replication (with diversity and
proactive recovery) ensures correct operation despite SCADA-
master compromises, it does not provide resilience to network
attacks. If an attacker disrupts the communication between the
control center and the power substations, the SCADA system
loses its ability to monitor and control the power grid, even if
all the SCADA masters are working correctly. As we discuss
in Section VII, targeting the network is a common strategy for
attackers, as it does not require protocol- or domain-specific
knowledge. Therefore, a resilient networking foundation is
essential for a complete intrusion-tolerant SCADA solution.

Spire uses the Spines overlay messaging framework [8],
which provides the ability to deploy an intrusion-tolerant
network [9]. Spines uses an overlay approach to overcome
attacks and compromises in the underlying network: overlay
sites are connected with redundancy, forcing an attacker to
successfully attack many links in the underlying networks to
disrupt communication to a single site. By using multihoming
at each site, Spines can leverage multiple underlying networks
(e.g., ISP backbones) to tolerate the complete failure of one or
more underlying networks. To overcome compromises of the
overlay nodes, intrusion-tolerant protocols authenticate all traf-
fic, employ redundant dissemination, and enforce fairness [9].

E. Remaining Challenges
The intrusion-tolerant network protects against large-scale

network disruption, overcomes malicious routing attacks, and
substantially increases the effort and resources required to
launch a successful denial of service attack. However, be-
cause SCADA systems are high-value targets, it is likely that
dedicated nation-state-level attackers will invest considerable
resources to disrupt these systems. With enough resources, it
is possible to execute sophisticated denial of service attacks
that can target a specific site and isolate it from the rest
of the network, such as the Coremelt [4] and Crossfire [5]
attacks. Therefore, to be truly resilient to network attacks,
Spire must continue to operate correctly even when one of the
control centers is disconnected from the rest of the network.
To overcome these sophisticated network attacks, we develop a
novel framework for distributing replicas across multiple sites,
which we describe in Section IV.

III. SYSTEM AND THREAT MODEL

Our full threat model is very broad, requiring only weak
assumptions and has never been considered before. This threat
model includes system-level compromises as well as network-
level threats.

At the system level, we consider compromised (Byzantine)
SCADA master replicas that are completely under the control
of the attacker and may exhibit arbitrary behavior.

At the network level, we consider network link failures,
misconfigurations, and malicious network attacks, including
(but not limited to) routing attacks (e.g. BGP hijacking [25])
and sophisticated denial of service attacks (e.g. Coremelt [4]
and Crossfire [5]) that can isolate a targeted site.

As explained in Section II-E, Spire’s intrusion-tolerant net-
working foundation addresses this broad network threat model
and allows us to reduce it to a narrower model that assumes
only a single site can be disconnected. The rest of the Spire
architecture only needs to address the narrower network threat
model. Hence, in the remainder of the paper, we develop an
architecture that simultaneously tolerates the compromise of
up to f SCADA master replicas, the disconnection of one
system site (possibly a control center), and the unavailability
of one replica due to proactive recovery.

As long as no more than f SCADA master replicas are
simultaneously compromised, the system guarantees consis-
tency of the system state. Specifically, it guarantees safety: if

3



Natural'Extensions New'Resilient'ConfigurationsExisting'Architectures

1 2 19
1

29
2

4 6 49
4

69
6

3+
3'(
f=
1,k

=1
);'
x+
y

2+
2+
2'(
f=
1,k

=1
)

2+
2+
2+
2'(
f=
1,k

=2
)

4+
4+
4'(
f=
1,k

=4
)

2+
2+
2+
2+
2'(
f=
1,k

=3
)

3+
3+
2+
2+
2'(
f=
1,k

=4
)

3+
3+
3+
3'(
f=
1,k

=4
)

6+
6+
6'(
f=
1,k

=7
)

All'Correct

Proactive'Recovery'(PR)

Disconnected/Downed'
Site
Disconnected/Downed'
Site'+'PR

Intrusion

Intrusion'+'PR

Disconnected/Downed'
Site'+'Intrusion
Disconnected/Downed'
Site'+'Intrusion'+'PR

Fig. 2. Illustration of specific SCADA system configurations’ ability to support the threat model we consider, including all combinations of a replica being
unavailable due to proactive recovery, a site disconnection due to network attack or failure, and an intrusion (SCADA master compromise).

two correct replicas execute the ith update, then those updates
are identical. As discussed in Section II-C, proactive recovery
forces an attacker to compromise more than f replicas within
a confined time window (rather than over the entire lifetime
of the system) to succeed in violating the system guarantees.

In terms of performance, Spire guarantees bounded delay:
the latency for an update introduced by an authorized compo-
nent of the system to be executed by a correct SCADA master
replica is upper bounded. At any time, we assume that at most
one site may be disconnected from the rest of the network. To
provide bounded delay, Spire requires that all of the correct
SCADA master replicas, with the exception of those located
in the disconnected site, are able to communicate with one
another. Moreover, at least one correct SCADA master replica
located in a control center must be able to communicate with
field power substations.

Note that due to the network stability requirements of Prime,
communication must also meet the bounded-variance property
of [7], which requires that for each pair of correct servers,
the network latency does not vary by more than a factor
KLat. However, since we consider the bounded amount of
time required to view-change to a correct leader as part of
the bounded delay to execute an update, in practice we only
require that the latency variation does not exceed KLat over
the short time period required to complete the view-change
and execute an update in the new view. A fuller discussion of
bounded delay across view changes appears in Section V-D.

IV. NETWORK-ATTACK RESILIENT INTRUSION-TOLERANT
SCADA ARCHITECTURE

To develop a network-attack-resilient intrusion-tolerant
SCADA architecture that supports the broad threat model
we consider, we first analyze existing SCADA architectures
(Section IV-B) and their natural extensions (Section IV-C),
showing that none completely addresses this threat model.
Based on this analysis, we develop a novel architecture that
provides continuous system availability under our model. We

discuss specific example configurations (Section IV-D), as well
as a general framework for network-attack-resilient intrusion-
tolerant SCADA architectures (Section IV-E).

A. Analysis Framework

Figure 2 presents the example SCADA system configura-
tions we discuss and shows each configuration’s ability to
support the threat model. Each row in the table corresponds
to a failure/attack scenario we aim to address. Each column
corresponds to a specific SCADA system configuration. The
name of each configuration describes how the SCADA master
replicas are distributed: a configuration “x” indicates a single
control center containing x replicas, “x-y” indicates a primary-
backup architecture with x replicas in the primary control
center and y replicas in the backup, and “x+y+. . . ” indicates
active intrusion-tolerant replication across multiple sites, with
x replicas in the first control center, y replicas in a second
control center, and so on. Each configuration shown in Figure 2
is discussed in Section IV-B, IV-C, or IV-D. Below, we explain
the meaning of the colored cells in Figure 2.

A green cell represents a fully operational system with
performance guarantees under attack. In this case, the system
is guaranteed to process any update within the bounded
amount of time necessary to support SCADA systems for the
power grid (about 100-200ms).

A gray cell indicates that the system is not guaranteed to
remain safe: an intrusion can compromise the system state.

A red cell indicates that the system will remain safe but will
not provide any guarantee of progress: progress halts until a
network attack ends or a failed site is repaired.

An orange cell indicates that the system will remain safe,
but will not provide any guarantee of progress until a cold-
backup control center is activated. The orange situation is
better than the red, as activating a cold-backup site is under
the control of the system operator. However, activating the
cold-backup site can take a significant amount of time (on the
order of tens of minutes to hours).

4



A yellow cell is similar to a green cell, except that the
performance guarantee is not met when a correct replica
is undergoing proactive recovery. Progress with performance
guarantees resumes once the recovery is completed.

The one blue cell is similar to a green cell, except that
the performance guarantee is not met in a very specific case,
where one of the two control centers is disconnected, there
is an intrusion in the other control center, and the remaining
correct server in that control center is currently undergoing
proactive recovery. Once the recovery of that specific server
is completed, the performance guarantees will be met again.

B. Existing SCADA Architectures

Figure 2 shows that currently deployed SCADA systems
(first four columns) are not sufficient to support the threat
model we consider: they cannot even guarantee safety. The “2-
2” column corresponds to the state-of-the-art SCADA system
architecture discussed in Section I, where a hot backup of
the SCADA master takes over if the primary SCADA master
fails, and a cold-backup control center can be brought online if
the primary control center fails. While the “2-2” configuration
improves on simpler systems that do not use a hot backup
(“1” and “1-1”) and on systems that only use a single control
center (“1” and “2”), any intrusion can have devastating
consequences, violating safety guarantees and causing the
system to take incorrect actions. In addition, if the primary
control center fails or is disconnected, no progress can be made
until the backup is brought online.

Initial efforts to create intrusion-tolerant SCADA used
intrusion-tolerant replication within a single control center,
using 3f +1 replicas (4 for f = 1) to tolerate f intrusions or
3f + 2k + 1 replicas (6 for f = 1, k = 1) to simultaneously
tolerate f intrusions and k proactive recoveries. As Figure 2
shows, these configurations (“4” and “6”) overcome intrusions
and maintain safety in all cases (with the “6” also tolerating a
proactive recovery), but they cannot tolerate a control center
going down or becoming disconnected due to a network attack.

C. Natural Extensions of Existing Architectures

To get the benefits of both existing fault-tolerant SCADA
architectures (“2-2”) and intrusion-tolerant replication (“4” or
“6”), we can combine the two approaches. We can deploy
intrusion-tolerant replication with four or six replicas in the
primary control center, and if the primary control center fails,
we can activate a backup control center with its own self-
contained intrusion-tolerant replication deployment (configu-
rations “4-4” and “6-6”). Figure 3 shows configuration “6-6”.

This natural extension improves on the previous configura-
tions by making it possible to both tolerate an intrusion and
restore operation if a control center is downed or disconnected.
However, restoring operation using the backup control center
can take a significant amount time (tens of minutes to hours).
In a malicious setting, an attacker can launch a network
attack to take down the primary control center at the time
of their choosing, potentially causing considerable downtime

Fig. 3. SCADA Architecture with 6 replicas in primary control center and 6
replicas in cold-backup control center (configuration 6-6).

at a critical moment. Furthermore, the attacker can repeatedly
launch the same attack, causing downtime to occur frequently.

Recall from Section I that switching from a cold-backup
approach to a hot-backup approach, where the backup control
center is always active and ready to take over, does not solve
the problem: network partitions (due to either benign failures
or malicious attacks) can cause a “split-brain” problem in
which both control centers believe they are the primary.

To avoid the potentially attacker-driven downtime incurred
by using a primary-backup approach, we instead use active
replication across multiple sites. An initial approach that fits
current SCADA architectures using two control centers is to
split the six replicas of configuration “6” between two control
centers, with all replicas active and running the intrusion-
tolerant replication protocol (configuration “3+3”).

Unfortunately, splitting the replicas across two control cen-
ters does not provide any additional resilience in terms of
tolerating a control-center failure or disconnection. In fact, this
is true regardless of the total number of replicas or their distri-
bution: for any configuration “x+ y”, one of the two control
centers must have at least half of the total replicas. If that
control center is unavailable, the intrusion-tolerant replication
protocol cannot make progress. Specifically, progress requires
at least 2f + k + 1 connected correct replicas, which is more
than half of the 3f + 2k + 1 total replicas.

D. Intrusion-Tolerant SCADA Resilient to Network Attacks

The above analysis of configuration “x + y” leads to
the key insight that more than two sites are necessary to
ensure continuous availability during a network attack that
can disconnect a control center. However, it is generally not
feasible for power companies to construct additional control
centers with full capabilities for controlling RTUs and PLCs
in the field due to the high cost of equipment and personnel.

One of the main innovations of this work is the realization
that power companies can use additional sites that do not
communicate with RTUs or PLCs to deploy an effective and
practical solution. These sites can be implemented relatively
cheaply using commercial commodity data centers. The data
centers connect with the control centers to participate in the
intrusion-tolerant replication protocol, but do not communicate
with field substations. For configurations with more than two
sites in Figure 2, the first two sites are control centers and the
remaining sites are data centers, unless otherwise specified.

5



Fig. 4. SCADA Architecture with 2 replicas in each of the two control centers
and the single data center (configuration 2+2+2).

Knowing that we need more than two sites, we can try
to distribute the six replicas needed to tolerate one intrusion
and one proactive recovery across three sites (configuration
“2+2+2”, which is illustrated in Figure 4). Similarly to con-
figuration “6”, configuration “2+2+2” successfully provides
bounded delay in the presence of one intrusion and one proac-
tive recovery. Moreover, this configuration improves on the
previous configurations, as it can now provide bounded delay
with a failed or disconnected site. However, if any other issue
occurs while a site is down or disconnected, configuration
“2+2+2” cannot make progress. In this case, the protocol
requires four (2f + k + 1 = 4) correct connected replicas to
make progress. The disconnection of a site leaves exactly four
correct replicas connected, meaning that no additional issues
can simultaneously be tolerated. For example, if a proactive
recovery occurs while a site is disconnected, no progress can
be made until that proactive recovery finishes.

To simultaneously support a downed or disconnected site
and another issue (intrusion or proactive recovery), we can
increase the parameter k in the 3f + 2k + 1 formula. If we
set k to the number of replicas in the largest site, the system
can provide bounded delay in all cases except when all three
issues occur simultaneously: a site is disconnected, a replica is
compromised, and a replica is undergoing proactive recovery.
Configuration “2+2+2+2” and configuration “4+4+4” provide
these system availability guarantees. These configurations
improve on all previous configurations, as they successfully
provide bounded delay when any combination of two issues
occurs. In the case that all three issues occur simultaneously,
bounded delay can resume after a proactive recovery finishes,
rather than needing to wait for a network attack or discon-
nection to be resolved. Note that configurations “2+2+2+2”
and “4+4+4” are the cheapest configurations (in terms of
number of replicas) able to provide these specific availability
guarantees for four sites and three sites, respectively.

To support the full threat model, maintaining availability
even when all issues occur simultaneously (a failed or discon-
nected site, an intrusion, and a proactive recovery), we can
again increase k. If we set k to the number of replicas in
the largest site, plus the maximum number of simultaneous
proactive recoveries (in this case, one), we can ensure that

Fig. 5. SCADA Architecture with 3 replicas in each of the two control centers
and two data centers (configuration 3+3+3+3).

2f + k + 1 correct replicas are connected at all times. This
allows the system to provide bounded delay in all cases.

In the case that the largest site contains two replicas, this
means that k must be three, so overcoming one intrusion
will require 3f + 2k + 1 = 10 replicas (for k = 3,
f = 1), resulting in configuration “2+2+2+2+2”. However,
in our SCADA architecture not all replicas are equal. To
make the intrusion-tolerant architecture feasible for utility
companies to deploy, it only includes two control centers (with
the other sites located in commodity data centers), and only
replicas in control centers can communicate with field devices.
Even if the intrusion-tolerant replication engine can process
updates with bounded delay, the system cannot monitor and
control field devices in substations unless at least one correct
replica is available in a control center. Therefore, our SCADA
architecture requires not only that 2f+k+1 correct replicas be
connected, but also that at least one of those replicas is located
in a control center. Configuration “2+2+2+2+2” shows exactly
this point. The system provides bounded delay at all times
except in the specific case that one control center has failed
or been disconnected, there is an intrusion in the other control
center, and the correct replica in that control center is currently
undergoing proactive recovery. In that narrow case, progress
stops until that particular replica completes its recovery.

Building a third control center will eliminate this issue, but
such a solution is not practical in SCADA environments for
the foreseeable future. Instead, we can increase the number of
replicas to ensure that a correct control center replica is always
available under our threat model. Configuration “3+3+2+2+2”
adds one replica to each control center and provides bounded
delay in the simultaneous presence of an intrusion, proactive
recovery, and a failed or disconnected control center.

Configurations “3+3+2+2+2”, “3+3+3+3” (illustrated in
Figure 5), and “6+6+6” are the first to demonstrate a complete
solution that supports the threat model we consider and is
viable for power companies to deploy. Using only two control
centers that can control field devices, these configurations
provide bounded delay even in the simultaneous presence of
an intrusion, a failed or disconnected site, and an ongoing
proactive recovery. Each of these three configurations uses
the minimal number of replicas required to support these

6



guarantees using two control centers and three, two, or one
data centers, respectively.

Of the three configurations providing a complete solution,
configuration “3+3+3+3” appears to strike the best balance
between the number of sites used and the total number of
replicas required (and corresponding processing and messag-
ing intensity): configuration “3+3+2+2+2” requires the same
number of replicas but uses one additional data center, making
it strictly more expensive; configuration “6+6+6” uses one
fewer data center, but requires 18 replicas compared with 12.
Due to the all-to-all nature of communication in the intrusion-
tolerant replication protocol, this makes it considerably more
expensive in terms of messaging and processing.

E. General Framework for Network-Attack-Resilient
Intrusion-Tolerant SCADA

We can generalize the examples discussed in Section IV-D
to design new intrusion-tolerant SCADA system configura-
tions that can use any number of sites S (where S > 2)
to tolerate any number of intrusions f , while simultaneously
supporting a downed or disconnected site, as well as one
replica undergoing proactive recovery.

As stated in Section II-A, the minimal number of replicas
needed to tolerate f simultaneous intrusions and k proactively
recovering replicas is n = 3f+2k+1. As shown in the above
discussion of example configurations, the k parameter can be
extended to include all non-Byzantine faults in the system.
Since our threat model includes an entire site being down or
disconnected (potentially due to a network attack), as well as
one proactively recovering replica at any given time, k must
be at least the number of replicas in the largest site (to account
for the disconnection of that site) plus one (to account for the
recovering replica). That is, for n replicas evenly distributed
across S sites, we require: k ≥

⌈
n
S

⌉
+ 1 =

⌈
3f+2k+1

S

⌉
+ 1.

Thus, to find the required k in terms of f and S, we have:

k ≥
⌈
3f + S + 1

S − 2

⌉
After finding the minimal value of k using this formula,

the total number of required replicas can simply be calculated
from the original formula n = 3f + 2k + 1.

For example, to overcome 1 intrusion using 4 total sites
(f = 1, S = 4), this approach gives us k ≥

⌈
3(1)+4+1

2

⌉
= 4

and n = 3(1) + 2(4) + 1 = 12. Distributing these 12
replicas evenly across the 4 sites gives us exactly configuration
“3+3+3+3” discussed in Section IV-D.

However, this formula does not account for the constraint
discussed in Section IV-D that it is not feasible for power grid
operators to construct more than two control centers with full
capabilities for controlling field devices. For f = 1, S = 5,
this formula yields k = 3, n = 10, which gives us exactly con-
figuration “2+2+2+2+2”. As discussed in Section IV-D, this
configuration suffers from the problem that a simultaneous site
disconnection, intrusion, and proactive recovery can eliminate
all four control center replicas, leaving no correct SCADA
masters that are able to communicate with field devices.

2 control centers 2 control centers 2 control centers
+ 1 data center + 2 data centers + 3 data centers

f = 1 6+6+6 3+3+3+3 3+3+2+2+2
f = 2 9+9+9 5+5+5+4 4+4+3+3+3
f = 3 12+12+12 6+6+6+6 5+5+4+4+4

TABLE I
SCADA SYSTEM CONFIGURATIONS USING 2 CONTROL CENTERS AND 1,
2, OR 3 DATA CENTERS TO SIMULTANEOUSLY TOLERATE A PROACTIVE

RECOVERY, DISCONNECTED SITE, AND 1, 2, OR 3 INTRUSIONS

To fix this, we must ensure that each control center has
at least f + 2 replicas, so that even if one control center is
disconnected and the other contains f compromised replicas
and one proactively recovering replica, there is still one correct
replica that can control the field devices. Since k must be at
least one more than the size of the largest site, this means we
must have k ≥ f + 3 in all cases. Therefore, we adjust our
formula for k to:

k = max

(
f + 3,

⌈
3f + S + 1

S − 2

⌉)
As before, after obtaining a value for k, we calculate the

total number of required replicas, based on the requirement
n ≥ 3f + 2k + 1. To distribute the replicas among the sites,
f +2 replicas must first be placed in each control center. The
remaining replicas must then be distributed such that no single
site has more than k − 1 replicas, which can be achieved by
distributing replicas as evenly as possible across the sites.

Table I presents the minimal number of replicas required to
tolerate one, two, or three intrusions while simultaneously sup-
porting a single proactive recovery and a single disconnected
site with two control centers and one, two, or three data centers
(for a total of three, four, or five sites). In the table, the first
two numbers in each cell represent the number of replicas in
each of the two control centers, while the remaining numbers
represent the number of replicas in each data center.

As Table I shows, configurations with more sites require
fewer total replicas, because losing any one site has less impact
on the system. This presents a trade-off between the cost of
additional sites, compared with the cost of additional repli-
cas and the considerable processing and messaging increase
associated with those additional replicas (due to the all-to-all
communication pattern). Configurations using two data centers
seem to provide a good balance between these factors.

V. INTRUSION-TOLERANT SCADA SOFTWARE
IMPLEMENTATION

The architecture described in Section IV provides a frame-
work for deploying SCADA systems that can overcome both
compromises and network attacks. However, this framework
requires that all SCADA system components support intru-
sion tolerance: the SCADA master must be replicated using
intrusion-tolerant replication, and the HMI, RTUs, and PLCs
must correctly interact with the replicated SCADA master.

Existing SCADA systems were not designed to support in-
trusion tolerance. Previous work that added intrusion-tolerance
to an existing SCADA product [26], as well as our initial
efforts to add intrusion tolerance to an existing open-source

7



SCADA system, observed important mismatches between the
models and performance needs of SCADA systems and those
provided by existing intrusion-tolerant technologies. These
mismatches made the resulting prototypes complex, difficult
to extend, and limited in scalability.

Therefore, Spire is designed from the ground up, with
intrusion tolerance as a core design principle: it includes a
SCADA master designed from scratch to support intrusion-
tolerant replication, RTU/PLC proxies that allow the SCADA
master to interact with RTUs and PLCs in an event-driven
intrusion-tolerant manner, and an intrusion-tolerant commu-
nication library. Spire builds on proven open-source com-
ponents, using the Prime intrusion-tolerant replication en-
gine [6], a pvbrowser-based HMI [27], the pvbrowser and
OpenDNP3 [28] implementations of the Modbus and DNP3
communication protocols (used between RTUs/PLCs and our
proxies), and the Spines intrusion-tolerant network [8].

A. Scalable Event-Driven Architecture

There is a major discrepancy between the server-driven
polling model of conventional SCADA systems and the client-
driven update model assumed by intrusion-tolerant replication
systems. While previous work compensated for this mismatch
using complex logical timeout protocols [26], we re-design the
SCADA master, offloading its traditional polling functionality
to RTU/PLC proxies.

Ideally, an RTU/PLC proxy is placed in each field site (e.g.
power substation) and is responsible for polling the RTUs
and PLCs in that site. However, if this is not possible, the
proxies may be placed anywhere between the SCADA master
and the field sites, including in the control center. In fact, for
the foreseeable future, many substations are likely to use non-
IP communication and will need to communicate via proxies
located in the control centers. When the proxy detects a change
in the state collected from the RTUs and PLCs, it sends an
update to the replicated SCADA master that is ordered and
executed using the intrusion-tolerant replication engine. The
proxies also send periodic status updates to the SCADA master
even if no change has occurred, but this interval may be
relatively long (e.g. on the order of a second or more).

This event-driven approach allows the system to scale to
many RTUs and PLCs, as the intrusion-tolerant replication
engine does not need to process each individual poll (which
may occur frequently, e.g. at 100ms intervals). Moreover, the
RTU/PLC proxy can batch status updates from all the RTUs
and PLCs in its substation, further reducing the number of
distinct updates the SCADA masters must process.

B. Intrusion-Tolerant Communication Library

System components that interact with the replicated SCADA
master (e.g. the HMI and RTU/PLC proxies) cannot simply
send updates to a single replica. Recall that under our threat
model, one control center may be disconnected, and the other
control center may include up to f compromised replicas and
one replica undergoing proactive recovery. Therefore, each
update must be sent to at least f + 2 replicas in each control

Fig. 6. Spire software architecture for configuration “3+3+3+3”

center to ensure that at least one correct control-center replica
receives the update in a timely manner.1

To ensure that a received message is valid, the HMI or
RTU/PLC proxy must know that at least one correct replica
reached agreement on that message. In many intrusion-tolerant
replication systems, a client must receive f+1 identical copies
of the message from different replicas, ensuring that at least
one copy was sent by a correct replica. Spire instead uses an
(f + 1, n) threshold signature scheme, where at least f + 1
out of n total shares are required to create a valid signature,
allowing the client to verify that at least f +1 replicas agreed
on a message by verifying a single RSA signature on that
message. This eliminates the need for clients to receive copies
of the message from f +1 control-center replicas (which may
not be possible under all failure scenarios).

C. Intrusion-Tolerant SCADA System Architecture

Figure 6 shows the architecture for a complete Spire de-
ployment using configuration “3+3+3+3”. The SCADA master
is replicated using Prime, and each replica runs a diverse
variant of the software (represented as different colors in
Figure 6). Periodically, the replicas are rejuvenated one at
time, in a round-robin manner, to remove any potentially
undetected compromises. Rejuvenating replicas follow the
proactive recovery procedure, which includes generating a new
diverse variant of the software that is different from all past,
present, and future variants (with high probability).

All replicas need to communicate with each other to partic-
ipate in the intrusion-tolerant replication protocol. However,
only the control-center replicas communicate directly with the
RTU/PLC proxies in the field sites (substations). To support
these requirements, we deploy two separate intrusion-tolerant
Spines networks: a coordination network (purple Spines nodes
in Figure 6) connects all of the replicas, and a dissemination

1Alternatively, the update may initially be sent to fewer replicas and re-sent
to more replicas after a timeout only if necessary, but this adds latency.

8



Fig. 7. Update latencies over 30-hour wide-area deployment (13 updates over
100ms not visible)

network (blue Spines nodes in Figure 6) connects the control-
center replicas with the RTU/PLC proxies in field sites (substa-
tions). Note that the control-center replicas are simultaneously
connected on both of these intrusion-tolerant networks.

Normal System Operation. SCADA system updates are
generated by the HMI and RTU/PLC proxies. Updates are
sent over the dissemination (blue) Spines network to f + 2
replicas in each of the two control centers. Received updates
are ordered by Prime on the coordination (purple) Spines
network and then executed (in order) by the SCADA masters.

If an update triggers a response from the SCADA master
replicas, the response is signed using threshold cryptography.
Correct replicas (both in data centers and control centers) send
their signature shares over the coordination (purple) network
to the control center replicas. Once a correct control center
replica receives f + 1 shares from different replicas on the
same content of the response, it combines the shares to create
a complete signature, and sends a single message with the
response and signature to the target clients (HMIs or RTU/PLC
proxies) over the dissemination (blue) Spines network.

D. Bounded Delay in Practice

As discussed in Section III, Spire guarantees bounded
delay. However, as noted in [29], the original analysis of
Prime’s bounded delay guarantee in [7] did not account for
proactive recovery. The original analysis relied on the fact that
eventually a leader will be elected that will never be suspected;
however, when proactive recovery is used, even a correct
leader will eventually be taken down for rejuvenation and
lose its role as leader. Because Prime’s view change protocol
completes within a bounded amount of time, Spire can still
support bounded delay, as long as we can bound the number
of view changes required to settle on a new correct leader.2

In the worst case, when a correct leader is taken down for re-
covery, we may simultaneously have f compromised replicas
and one disconnected or failed site. Because Prime chooses
leaders in round-robin order, we stripe replicas across sites
to prevent repeatedly trying to switch to a new leader in the

2As originally specified, Prime does not guarantee that every correct replica
can act as the leader: the f slowest replicas may be suspected and removed
from their role. However, when the geographic locations of the replicas and
the normal-case latencies between them are known, this is easily fixed by
imposing a floor on the acceptable turnaround time, so that the leader is
never required to provide a faster turnaround time than the slowest correct
replica is capable of (while not subject to a network attack).

Fig. 8. Update latencies over 30-hour wide-area deployment

same failed site. For example, for configuration “3+3+3+3”,
we place replicas 1, 5, and 9 in site 1, replicas 2, 6, and 10 in
site 2, replicas 3, 7, and 11 in site 3, and replicas 4, 8, and 12
in site 4. Therefore, in configuration “3+3+3+3”, settling on a
correct leader may require executing f + 2 = 3 view changes
(where the first view change tries to elect a replica from the
disconnected site, the second tries to elect the compromised
replica, and the third successfully elects a correct replica).

In general, the worst-case number of view changes required
is: f + 2+

⌊
f+1
S−1

⌋
, assuming striping of replicas across sites.

This accounts for the proactive recovery, f compromises, and
disconnected site, as well as the fact that when the total
number of sites S is less than or equal f + 2, we can cycle
through all S sites and try to elect a leader in the disconnected
site multiple times. Note that the worst case occurs when the
leader is in the site that becomes disconnected, the next leader
is recovering, and the next f leaders are compromised.

VI. EVALUATION

We deploy Spire in a real wide-area cloud environment to
evaluate its ability to support the timeliness requirements of
the power grid. We focus on configuration “3+3+3+3”, as it
provides a good balance between the number of sites and total
number of replicas used to tolerate one intrusion.

We then assess the feasibility of a range of system con-
figurations, including configurations using a different number
of sites to tolerate one intrusion and configurations tolerating
two or three intrusions, using a local-area environment with
emulated latencies between sites.

A. Wide-Area Deployment and Evaluation

We deployed Spire in configuration “3+3+3+3” across four
sites on the East Coast of the US, spanning approximately
250 miles. This geographic span is similar to that of large
US power grids. The sites included a cloud-provider control
center, a development lab (acting as the second control center),
and two commercial data centers. In this experiment, Spire
monitored and controlled ten emulated power substations that
introduced updates to the system via RTU/PLC proxies at a
rate of one update per second per substation.

To evaluate Spire’s ability to support the requirements
of power grid control systems during normal operation, we
conducted an extended test over a period of 30 hours. Each
update submitted by an RTU/PLC proxy during this period was

9



Fig. 9. Latency in the presence of network attacks and proactive recoveries

ordered by Prime and delivered to the SCADA masters, which
generated a threshold-signed response that was sent back to
the proxy. For each update, we calculated the roundtrip latency
from the time the update was submitted to the time the re-
sponse was received. Figure 7 summarizes the update latencies
observed over this period. The average and median latencies
were both 56.5ms, with 99.8% of the updates between 43.2ms
and 71.6ms. The latency for each update is plotted in Figure 8.
Out of 1.08 million total updates, nearly 99.999% had latencies
below 100ms: only 13 updates exceeded 100ms, and of those
13, only one exceeded 200ms.

To evaluate Spire’s performance under attack, we launched
targeted attacks designed to test the system’s ability to with-
stand all combinations of faults and attacks illustrated in
Figure 2. Spire’s performance under all combinations of a
proactive recovery and a network attack (rows 1-4 in Figure 2)
is shown in Figure 9. Proactive recovery of a non-leader replica
(e.g. of replica 2 at 00:30) has no effect on the system’s
performance. Proactive recovery of the current leader (e.g. of
replica 1 at 01:30) leads to a view change, which causes a
brief latency spike (with two updates exceeding 100ms in this
case). The disconnection of a non-leader site does not cause a
view change, but may cause an increase in latency, if the fastest
(best-connected) quorum of replicas is no longer available (e.g.
the disconnection of site 1 at 02:30). The disconnection of
the site containing the leader will cause a view change and
a corresponding latency spike (e.g. disconnection of site 2
at 03:30). Finally, the worst-case combination of a proactive
recovery and site disconnection, where the leader site becomes
disconnected while the next leader is undergoing proactive
recovery, incurs two view changes, leading to a larger latency
spike (e.g. with three updates exceeding 200ms at 04:45).

Spire’s performance in the presence of an intrusion (rows
5-8 in Figure 2) is shown in Figure 10. While a compromised
replica can perform arbitrary actions, we demonstrate Spire’s
resilience to two illustrative types of attacks. In the first attack,
the leader generally acts correctly, to avoid being suspected
and replaced, but attempts to increase the latency of updates.
In Figure 10, from 00:30 to 01:50, the leader gradually adds
delay, increasing update latencies up to about 80ms; however,
when it tries to increase the delay beyond this, it is suspected
and a view change occurs. In the second attack, the leader
attempts to send a pre-prepare message containing incorrect

Fig. 10. Latency in the presence of intrusions, network attacks, and proactive
recoveries

values to violate the total ordering, but this is immediately
detected, and the leader is removed in a view change (02:20).
The remaining three attacks show the combination of an
intrusion with a proactive recovery and/or network attack. At
03:05, the compromised leader acts maliciously and is detected
and removed while the next leader is undergoing proactive
recovery, causing two view changes to occur before settling on
a correct leader. At 04:35, the compromised leader is removed
while the next leader’s site is disconnected, again incurring
two view changes. Finally, at 06:20, the worst-case situation
occurs, where the compromised leader is suspected at exactly
the time that the next leader’s site is disconnected and the
leader after that is undergoing proactive recovery, forcing three
view changes to occur before a correct leader is reached.

Overall, this evaluation demonstrates Spire’s practicality in
supporting the extended threat model in a real-life situation.

B. General Framework Feasibility Evaluation

While we consider configuration “3+3+3+3” the most prac-
tical configuration supporting one intrusion, we present a range
of configuration options in Section IV and aim to support
multiple intrusions. Therefore, we assess the feasibility of
other configurations in a local-area environment with emulated
latencies between the machines configured to match those
observed between the geographic sites in the wide-area eval-
uation in Section VI-A. These results are shown in Table II.

First, we assess the three configurations supporting one
intrusion from Table I in Section IV-E. The emulated results
for configuration “3+3+3+3” match the wide-area results well:
the average and median latencies are both 54.7ms, compared
with 56.5ms, and 99.8% of update latencies are between
43.1ms and 67.1ms, compared with 43.2ms and 71.6ms. The
differences between the two environments are explained by
differences in the machines’ processing power, as well as
real-world latency fluctuations that were not captured by the
emulation, leading to slightly higher latencies in the wide-
area environment. While configuration “6+6+6” has a lower
average latency than “3+3+3+3” (51.4ms), the higher commu-
nication and processing costs associated with using 18 replicas
rather than 12 results in a slight increase in latency for the
worst updates (67.1ms to 68.8ms for the 99.9 percentile).
Configuration “3+3+2+2+2” shows higher overall latencies
than the other configurations due to its additional site.

10



Avg Latency % < 100ms % < 200ms 0.1 percentile 1 percentile 50 percentile 99 percentile 99.9 percentile
6+6+6 51.4 ms 100.00 100.00 39.5 ms 40.6 ms 51.3 ms 63.8 ms 68.8 ms
3+3+3+3 54.7 ms 100.00 100.00 43.1 ms 44.2 ms 54.7 ms 65.4 ms 67.1 ms
3+3+2+2+2 56.4 ms 100.00 100.00 44.5 ms 45.8 ms 56.3 ms 67.3 ms 69.5 ms
5+5+5+4 57.4 ms 100.00 100.00 45.4 ms 46.6 ms 57.4 ms 68.8 ms 71.8 ms
6+6+6+6 64.8 ms 99.9111 99.9667 50.4 ms 52.2 ms 64.5 ms 82.7 ms 97.7 ms

TABLE II
SCADA CONFIGURATION PERFORMANCE ON LAN WITH EMULATED LATENCIES BETWEEN SITES FOR 36000 UPDATES OVER 1 HOUR

Since using four sites provides the best trade-off overall,
we assess the feasibility of supporting two intrusions using
configuration “5+5+5+4” and three intrusions using config-
uration “6+6+6+6”. While configuration “5+5+5+4” shows
higher overall latencies than “3+3+3+3” due to the additional
replicas, they are still well within the acceptable range: all
updates over the one-hour period are delivered within 100ms.
This demonstrates that it is feasible to deploy Spire to support
two simultaneous intrusions. Configuration “6+6+6+6” begins
to reach the limits of the performance the system currently
supports. While the average latency is acceptable, the latency
of the worst updates increases considerably, and a small
fraction of the updates (0.04%) exceed 200ms. We consider
this performance to be borderline: more work is required to
improve the engineering, replication protocol design, or cryp-
tographic mechanisms to make this configuration deployable.

While it is always better to support more simultaneous intru-
sions, [29] shows that most of the benefit of proactive recovery
can be obtained by supporting two intrusions, rather than
one. Supporting more than two intrusions provides additional
benefits, but with diminishing returns. Therefore, the ability to
support two simultaneous intrusions in our demanding threat
model (including network attacks) is a meaningful milestone.

VII. SPIRE IN ACTION

In April 2017, we participated in a red-team exercise, in
which an experienced hacker team attacked both a commercial
SCADA system set up according to best practices and Spire.
Within a few hours of attacking the commercial system, the
red team completely took over the PLC controlling the mini
power grid set up for the exercise by launching a man-in-the-
middle attack between the SCADA master and the PLC.

In contrast, over two days of attacking Spire, the red team
was not able to cause any disruption, due to the intrusion-
tolerant network setup that prevented ARP poisoning attacks,
the authentication and encryption of all traffic by Spire’s
intrusion-tolerant network, and the architecture that enforced
that the PLC only communicate with the PLC proxy. On the
third day, the red team was given access to a machine running
one of Spire’s SCADA master replicas and Spines nodes on
both the dissemination and coordination networks. From this
position inside the system, they launched denial of service
attacks, but were not successful due to the fairness enforced
by the intrusion-tolerant protocols.

During this exercise, the red-team largely focused their
efforts on network-level attacks, even from a compromised
node, reinforcing the need to address the expanded threat
model we consider in this work, with simultaneous network
attacks and system compromises.

VIII. RELATED WORK

Spire builds on intrusion-tolerant replication to overcome
system-level compromises. While Spire uses Prime, there are
many other intrusion-tolerant replication protocols. Some, like
Prime, guarantee performance under attack (e.g. [12], [13],
[14], [15]), while others reduce cost by making stronger
assumptions, such as using a trusted component to reduce the
number of required replicas (e.g. [30], [31], [32], [14]).

Intrusion-tolerant replication has previously been used to
overcome SCADA master compromises. Zhao et al. [33] use
PBFT [11] with four replicas to overcome one compromise.
Kirsch et al. [26] use Prime to add intrusion tolerance to
a Siemens SCADA product in a prototype implementation.
However, these works are limited to a single control center,
and thus cannot overcome the network attacks we consider.

RAM [34] and EBAWA [14] are intrusion-tolerant repli-
cation protocols designed to reduce overhead in wide-area
environments. The work in [35] uses a similar approach
to replicate a SCADA Master and Distribution Management
System across several sites. In these protocols, each replica
is placed in its own geographic site, resulting in a threat
model that supports a total of f system-level compromises
or benign site failures (e.g. natural disasters). However, these
protocols do not consider network attacks. The benign site
failures that they tolerate are not equivalent to the disconnected
sites tolerated in our model: Spire supports a broad network
attack model, but reduces the hard problem of overcoming
sophisticated network attacks to the simpler one of overcoming
a disconnected site using an intrusion-tolerant network. More-
over, using a separate site for each additional replica does not
scale well with the number of faults that must be tolerated and
may not be feasible in the context of SCADA systems due to
cost and latency constraints.

Steward [36] uses a two-level hierarchical replication archi-
tecture that, similarly to Spire, includes multiple replicas in
each of several geographic sites. In Steward, each site runs its
own intrusion-tolerant replication protocol, and representatives
from each site participate in a higher-level replication protocol,
reducing wide-area messaging costs. Steward’s threat model
does not support network attacks and limits the of number
compromises tolerated per site, while Spire supports f replica
compromises anywhere in the system. Moreover, Steward does
not provide the bounded-delay guarantees necessary to support
the latency requirements of SCADA systems for the power
grid, and it is unclear how to do this in a hierarchical model.

An orthogonal approach to protecting critical infrastructure
is to use intrusion-tolerant firewalls. For example, CRUTIAL
Information Switches use intrusion-tolerant replication, diver-

11



sity, proactive-reactive recovery, and access control to thwart
external attacks [37]. The SieveQ [38] firewall uses two layers
of replication to increase the supportable traffic load. Such
firewalls are easy to integrate and reduce the attack surface by
preventing external threats from reaching critical components
(and Spire could benefit from such firewalls). However, if the
firewall is breached or an insider attack is present, the Spire
approach is needed as a last line of defense.

Another approach is to use domain-specific intrusion de-
tection and response techniques. Such techniques leverage
detailed knowledge of the power grid and coordinate infor-
mation from multiple sources to detect malicious activity
(e.g. [39], [40]), and prevent harmful effects from being
applied (e.g. [41]) or quickly and automatically respond to at-
tacks to limit their damage (e.g. [42]). While Spire overcomes
compromises of the SCADA master, it does not prevent a
malicious human operator from issuing destructive commands.
Using these detection techniques, Spire could potentially iden-
tify and discard such malicious inputs. However, recent work
shows that certain types of attacks can evade current detection
methods using power-grid specific knowledge [43], further
motivating Spire’s intrusion-tolerant approach.

IX. CONCLUSION

We have presented Spire, the first intrusion-tolerant SCADA
system that simultaneously addresses system compromises and
network attacks. Spire uses a novel framework for distributing
SCADA master replicas across three or more active sites to
ensure continuous availability and bounded delay even under
attack. Spire’s architecture supports using commodity data
centers with no access to field devices to augment existing
power grid control centers. A wide-area evaluation of Spire
shows that it can support the requirements of power grid
control systems under attack.

X. ACKNOWLEDGEMENT

We thank Kevin Jordan for inspiring us to work on
intrusion-tolerant SCADA systems for the power grid. This
work was supported in part by DARPA grant N660001-1-2-
4014 to Johns Hopkins University and by DoD Environmental
Security Technology Certification Program (ESTCP) Project
EW-201607 to Resurgo LLC. Its contents are solely the
responsibility of the authors and do not represent the official
view of DARPA or the Department of Defense.

REFERENCES

[1] C. M. Davis and T. J. Overbye, “Confirmation of a Coordinated Attack
on the Ukrainian Power Grid,” SANS Industrial Control Systems Security
Blog, 2016.

[2] “IEEE standard communication delivery time performance requirements
for electric power substation automation,” IEEE Std 1646-2004, pp. 1–
24, 2005.

[3] J. Deshpande, A. Locke, and M. Madden, “Smart choices for the smart
grid,” 2011, Alcatel-Lucent Technolgy White Paper.

[4] A. Studer and A. Perrig, “The coremelt attack,” in 14th European Symp.
Research in Comput. Security (ESORICS), 2009, pp. 37–52.

[5] M. S. Kang, S. B. Lee, and V. Gligor, “The crossfire attack,” in IEEE
Symp. Security and Privacy (SP), May 2013, pp. 127–141.

[6] “Prime: Byzantine replication under attack,” www.dsn.jhu.edu/prime,
access: 2017-11-19.

[7] Y. Amir, B. Coan, J. Kirsch, and J. Lane, “Prime: Byzantine replication
under attack,” IEEE Trans. Dependable and Secure Computing, vol. 8,
no. 4, pp. 564–577, July 2011.

[8] “The Spines Messaging System,” www.spines.org, access: 2017-12-03.
[9] D. Obenshain, T. Tantillo, A. Babay, J. Schultz, A. Newell, M. E. Hoque,

Y. Amir, and C. Nita-Rotaru, “Practical intrusion-tolerant networks,” in
IEEE Int. Conf. Distrib. Comput. Syst. (ICDCS), June 2016, pp. 45–56.

[10] L. Lamport, R. Shostak, and M. Pease, “The Byzantine generals prob-
lem,” ACM Trans. Prog. Lang. Syst., vol. 4, no. 3, pp. 382–401, Jul.
1982.

[11] M. Castro and B. Liskov, “Practical Byzantine fault tolerance and
proactive recovery,” ACM Trans. Comput. Syst., vol. 20, no. 4, pp. 398–
461, Nov. 2002.

[12] A. Clement, E. Wong, L. Alvisi, M. Dahlin, and M. Marchetti, “Making
byzantine fault tolerant systems tolerate byzantine faults,” in USENIX
Symp. Networked Syst. Design and Implem. (NSDI), 2009, pp. 153–168.

[13] G. S. Veronese, M. Correia, A. N. Bessani, and L. C. Lung, “Spin one’s
wheels? byzantine fault tolerance with a spinning primary,” in IEEE Int.
Symp. Reliable Distributed Systems (SRDS), Sept 2009, pp. 135–144.

[14] ——, “EBAWA: Efficient byzantine agreement for wide-area networks,”
in IEEE Int. Symp. High Assurance Syst. Engineering, 2010, pp. 10–19.

[15] Z. Milosevic, M. Biely, and A. Schiper, “Bounded delay in byzantine-
tolerant state machine replication,” in IEEE Int. Symp. Reliable Dis-
tributed Systems (SRDS), Sept 2013, pp. 61–70.

[16] A. Avizienis, “The N-version approach to fault-tolerant software,” IEEE
Trans. Software Eng., vol. SE-11, no. 12, pp. 1491–1501, Dec 1985.

[17] J. C. Knight and N. G. Leveson, “An experimental evaluation of the
assumption of independence in multiversion programming,” IEEE Trans.
Software Engineering, vol. SE-12, no. 1, pp. 96–109, Jan 1986.

[18] M. Garcia, A. Bessani, I. Gashi, N. Neves, and R. Obelheiro, “OS
diversity for intrusion tolerance: Myth or reality?” in IEEE/IFIP Int.
Conf. Dependable Systems Networks (DSN), June 2011, pp. 383–394.

[19] F. B. Cohen, “Operating system protection through program evolution,”
Computers & Security, vol. 12, no. 6, pp. 565–584, 1993.

[20] S. Forrest, A. Somayaji, and D. H. Ackley, “Building diverse computer
systems,” in Wkshp Hot Topics in Operating Syst., May 1997, pp. 67–72.

[21] V. Pappas, M. Polychronakis, and A. D. Keromytis, “Smashing the
gadgets: Hindering return-oriented programming using in-place code
randomization,” in IEEE Symp. Sec. and Priv., May 2012, pp. 601–615.

[22] C. Giuffrida, A. Kuijsten, and A. S. Tanenbaum, “Enhanced operating
system security through efficient and fine-grained address space random-
ization,” in USENIX Security Symposium, 2012, pp. 475–490.

[23] T. Roeder and F. B. Schneider, “Proactive obfuscation,” ACM Trans.
Comput. Syst., vol. 28, no. 2, pp. 4:1–4:54, Jul. 2010.

[24] P. Sousa, A. N. Bessani, M. Correia, N. F. Neves, and P. Verissimo,
“Highly available intrusion-tolerant services with proactive-reactive re-
covery,” IEEE Trans. Parallel Distrib. Syst., vol. 21, no. 4, pp. 452–465,
Apr. 2010.

[25] A. Toonk, “Chinese ISP hijacks the Internet,” bgpmon.net/blog/?p=282,
2010, access: 2015-12-15.

[26] J. Kirsch, S. Goose, Y. Amir, D. Wei, and P. Skare, “Survivable SCADA
via intrusion-tolerant replication,” IEEE Trans. Smart Grid, vol. 5, no. 1,
pp. 60–70, Jan 2014.

[27] “pvbrowser. Simple process visualization,” http://pvbrowser.de/
pvbrowser/index.php, accessed: 2017-11-21.

[28] Automatak, “opendnp3,” https://www.automatak.com/opendnp3/, ac-
cessed: 2017-11-21.

[29] M. Platania, D. Obenshain, T. Tantillo, R. Sharma, and Y. Amir,
“Towards a practical survivable intrusion tolerant replication system,”
in IEEE Int. Symp. Reliable Distrib. Syst. (SRDS), 2014, pp. 242–252.

[30] M. Correia, N. Neves, and P. Verissimo, “BFT-TO: Intrusion tolerance
with less replicas,” The Computer Journal, vol. 56, no. 6, pp. 693–715,
June 2013.

[31] B.-G. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz, “Attested
append-only memory: Making adversaries stick to their word,” SIGOPS
Oper. Syst. Rev., vol. 41, no. 6, pp. 189–204, Oct. 2007.

[32] G. S. Veronese, M. Correia, A. N. Bessani, L. C. Lung, and P. Verissimo,
“Efficient byzantine fault-tolerance,” IEEE Transactions on Computers,
vol. 62, no. 1, pp. 16–30, Jan 2013.

[33] W. Zhao and F. E. Villaseca, “Byzantine fault tolerance for electric
power grid monitoring and control,” in Int. Conf. Embedded Software
and Systems, July 2008, pp. 129–135.

12



[34] Y. Mao, F. P. Junqueira, and K. Marzullo, “Towards low latency state
machine replication for uncivil wide-area networks,” in In Workshop on
Hot Topics in System Dependability, 2009.

[35] N. A. C. Medeiros, “A fault- and intrusion- tolerant architecture for EDP
distribuicao SCADA system,” Master’s thesis, Univ. of Lisbon, 2011.

[36] Y. Amir, C. Danilov, D. Dolev, J. Kirsch, J. Lane, C. Nita-Rotaru,
J. Olsen, and D. Zage, “Steward: Scaling byzantine fault-tolerant repli-
cation to wide area networks,” IEEE Trans. Dependable and Secure
Computing, vol. 7, no. 1, pp. 80–93, Jan 2010.

[37] A. N. Bessani, P. Sousa, M. Correia, N. F. Neves, and P. Verissimo,
“The crutial way of critical infrastructure protection,” IEEE Security &
Privacy, vol. 6, no. 6, pp. 44–51, Nov 2008.

[38] M. Garcia, N. Neves, and A. Bessani, “SieveQ: A layered bft protection
system for critical services,” IEEE Trans. Dependable and Secure
Computing, vol. PP, no. 99, pp. 1–1, 2016.

[39] S. Zonouz, K. M. Rogers, R. Berthier, R. B. Bobba, W. H. Sanders, and

T. J. Overbye, “SCPSE: Security-oriented cyber-physical state estimation
for power grid critical infrastructures,” IEEE Trans. Smart Grid, vol. 3,
no. 4, pp. 1790–1799, Dec 2012.

[40] A. Bohara, U. Thakore, and W. H. Sanders, “Intrusion detection in
enterprise systems by combining and clustering diverse monitor data,” in
ACM Symp. and Bootcamp on the Science of Security, 2016, pp. 7–16.

[41] S. Zonouz, J. Rrushi, and S. McLaughlin, “Detecting industrial control
malware using automated plc code analytics,” IEEE Security Privacy,
vol. 12, no. 6, pp. 40–47, Nov 2014.

[42] S. A. Zonouz, H. Khurana, W. H. Sanders, and T. M. Yardley, “RRE:
A game-theoretic intrusion response and recovery engine,” IEEE Trans.
Parallel and Distributed Systems, vol. 25, no. 2, pp. 395–406, Feb 2014.

[43] D. Shelar, P. Sun, S. Amin, and S. Zonouz, “Compromising security of
economic dispatch in power system operations,” in IEEE/IFIP Int. Conf.
Dependable Systems and Networks (DSN), June 2017, pp. 531–542.

13


