
Deploying Intrusion-Tolerant SCADA
for the Power Grid

Amy Babay, John Schultz, Thomas Tantillo, Samuel Beckley,
Eamon Jordan, Kevin Ruddell, Kevin Jordan, and Yair Amir

Johns Hopkins University — {babay, tantillo, sbeckle2, yairamir}@cs.jhu.edu
Spread Concepts LLC — {babay, jschultz, yairamir}@spreadconcepts.com
Resurgo LLC — {eamon.jordan, kevin.ruddell, kevin.b.jordan}@resurgo.net

Technical Report CNDS-2019-1 - January 2019
http://www.dsn.jhu.edu

Abstract—While there has been considerable research on
making power grid Supervisory Control and Data Acquisition
(SCADA) systems resilient to attacks, the problem of transition-
ing these technologies into deployed SCADA systems remains
largely unaddressed. We describe our experience and lessons
learned in deploying an intrusion-tolerant SCADA system in two
realistic environments: a red-team experiment in 2017 and a test
deployment in a power plant in 2018. These experiences resulted
in technical lessons related to developing an intrusion-tolerant
system with a real deployable application, preparing a system
for deployment in a hostile environment, and supporting protocol
assumptions in that hostile environment. We also discuss some
meta-lessons regarding the cultural and interpersonal aspects
of transitioning academic research into practice in the power
industry.

I. INTRODUCTION

Because of their critical importance to modern society,
power grid systems present a high-value target for attackers,
and recent events have shown that these systems are in fact
being targeted by dedicated nation-state-level attackers. This
serious emerging threat has led to considerable research on
protecting power grids (e.g. [1]–[3]), and particularly on mak-
ing the Supervisory Control and Data Acquisition (SCADA)
systems that provide their core monitoring and control capabil-
ities resilient to attacks. While the body of academic research
on this topic has produced innovative solutions, inventing
SCADA systems capable of withstanding sophisticated attacks
and operating correctly even while partially compromised
(e.g. [4]–[8]), the problem of transitioning these technologies
into deployed SCADA systems remains largely unaddressed.

In this paper, we describe our experience and lessons
learned throughout four years of working to bridge the gap
between academic research and realizing the goal of an
intrusion-tolerant power grid. This process started when we
were convinced to apply our work on resilient clouds to the
power domain: after all, if there is no power, even the best
cloud protocols are irrelevant. Based on our work on intrusion-
tolerant cloud networking and consistent state, we developed
Spire, an intrusion-tolerant SCADA system for the power
grid [7]. Spire replicates the SCADA master using Byzantine

fault-tolerant replication with performance guarantees under
attack, employs diversity and proactive recovery to provide
protection over a long system lifetime, and uses an intrusion-
tolerant network infrastructure to resiliently connect the sys-
tem components. This system is complemented by MANA, a
machine-learning-based network traffic analyzer and intrusion
detection system (IDS) that we developed to detect anomalies
and provide the situational awareness essential to an effective
defense.

While the journey toward an intrusion-tolerant power grid
is still ongoing, in this paper we describe the experience of
deploying our intrusion-tolerant SCADA system and IDS in
two realistic environments: a red-team experiment in 2017
and a power plant test deployment in 2018. During the week-
long red-team experiment, the system successfully withstood
attacks from a nation-state-level hacker team. During the test
deployment, the system managed a small power topology in a
“mothballed” steam-turbine power plant that had active control
systems connected to the grid but was not generating power at
the time. To the best of our knowledge, this is the first time an
intrusion-tolerant SCADA system was tested by a nation-state-
level red team, and the first time such a system was deployed
(in a test) in an actual power installation.

Overall, our development and deployment experience re-
sulted in two types of lessons. First, it resulted in technical
lessons related to developing an intrusion-tolerant system with
a real deployable application (a SCADA system, as opposed
to a generic replication protocol), preparing a system for
deployment in a hostile environment, and supporting protocol
assumptions in that hostile environment. Second, it resulted in
meta-lessons related to the cultural and interpersonal aspects
of transitioning academic research into practice in the power
industry, which in our experience is considerably harder than
in the cloud and Internet domains.

At the technical level, the lessons we learned in developing
and preparing the system centered on the relationship between
the application state and the replication protocol, as well as
the need for a holistic end-to-end view of intrusion tolerance
to resist attacks at all levels of the system. The technical

1



PLC	

Physical	
Equipment	

RTU	

Physical	
Equipment	

HMI 

Primary 
SCADA 
Master 

Backup 
SCADA 
Master 

Fig. 1. Conventional SCADA system architecture.

lessons learned in subjecting the system to a red team attack
underscored the need for resilience at all levels of the system,
exposing the network and operating system levels as the
first targets for attack, and suggested techniques for code
compilation and deployment that can increase the work the
attacker must do to learn about the system.

Our experience also highlighted the importance of situ-
ational awareness for the SCADA system operator. While
intrusion tolerance can effectively mask failures and attacks, it
is important to present the system’s knowledge about ongoing
attacks and anomalies directly to the operator to allow them
to react and take action. We have found machine learning to
be an effective approach for intrusion detection in SCADA
environments, due to its ability to passively identify custom
and zero-day attacks that do not have known signatures.

At the cultural, meta-lesson level, we gained considerable
insight into how to execute a successful short-term experiment
in a real environment as well as what is required for the
ultimate transition of research into practice in the power
industry. These lessons highlighted the need to earn the
trust of power company engineers and decision makers as a
precondition for any installation on their premises, the need
to learn the vocabulary of an entirely different industry to
effectively translate ideas, and the need for an incremental
deployment plan to make progress in a highly conservative
ecosystem.

The remainder of the paper is organized as follows: Sec-
tion II provides an overview of our intrusion-tolerant SCADA
system to give context on exactly what was deployed. Sec-
tion III discusses design choices that were made to prepare
the system for attacks and deployment. Section IV describes
the red team experiment conducted in March and April 2017.
Section V describes the power plant test deployment conducted
in January and February 2018. Section VI summarizes the
key lessons from both deployment experiences. Section VII
discusses related work, and Section VIII concludes the paper.

Intrusion-Tolerant	
Network	

Control	Center	

SCADA		
Master	HMI	 SCADA		

Master	
SCADA		
Master	

SCADA		
Master	

SCADA		
Master	

SCADA		
Master	

LAN	

…	

Substation	

RTU	

Physical	
Equipment	

PLC/RTU	
Proxy	

Substation	

PLC	

Physical	
Equipment	

PLC/RTU	
Proxy	

Fig. 2. Spire system architecture using six replicas (to withstand one intrusion
and support one proactive recovery).

II. SYSTEM OVERVIEW

Conventional SCADA system architectures include a
SCADA master, Human Machine Interface (HMI), and several
Programmable Logic Controllers (PLCs) and/or Remote Ter-
minal Units (RTUs) that interface with the power equipment.
Figure 1 shows the architecture of such a system. The SCADA
master is the central control server, responsible for collecting
status updates from the RTUs and PLCs. The SCADA master
uses that information to determine the state of the system,
make control decisions, and display the status to the human
operator through the HMI. The system operator can use
the HMI to issue manual supervisory commands, which the
SCADA master processes and sends to the RTUs and PLCs.
Due to the SCADA master’s importance, a primary-backup
architecture is often used to ensure that if the primary SCADA
master fails, the backup can take over and restore operation.

Spire, the intrusion-tolerant SCADA system that we have
developed, is designed to overcome system-level attacks that
can allow an adversary to compromise a SCADA master as
well as network-level attacks that aim to disrupt communica-
tion between the components of the SCADA system [7], [9].
Its architecture is shown in Figure 2.

At the system-level, it overcomes compromises of the
SCADA masters using Byzantine Fault Tolerant replication,
where 3f + 1 total replicas can be used to maintain correct
operation in the presence of f compromised replicas [10].
Spire specifically uses the Prime replication engine to provide
both safety and latency guarantees under attack [11].

However, if all replicas are identical, intrusion-tolerant
replication is not effective: an attacker who compromises one
replica can reuse that same exploit to compromise all of the
replicas. Therefore, we use the MultiCompiler [12], [13] to
diversify the replicas’ attack surface by introducing random
changes at compile time. These changes do not affect the
overall behavior of the program, but change its layout in a
way that makes it extremely unlikely that the same exploit
will succeed in compromising any two distinct variants.

2



While diversifying replicas forces an attacker to develop a
different exploit for each replica, a dedicated attacker with
sufficient time and resources can eventually craft enough
distinct exploits to breach the system guarantees. Therefore,
we use proactive recovery [10], [14], [15] to periodically
take each replica down and restore it to a known clean state
with a new diverse variant of the code. Because a replica
undergoing proactive recovery is temporarily unavailable, sup-
porting proactive recovery requires more total replicas: to
withstand f intrusions when k replicas may be simultaneously
undergoing proactive recovery, a total of 3f +2k+1 replicas
are needed [15] (6 replicas for f = 1, k = 1, as in Figure 2).

At the network-level, Spire uses the Spines intrusion-
tolerant network to provide authenticated, encrypted, and
resilient communication between the system components [16].
To connect existing PLCs and RTUs to the network, we use
a proxy that limits their network attack surface. Their typical,
insecure industrial communication protocols, such as Modbus
or DNP3, are used only on the direct connection between the
PLC or RTU and its proxy, which, ideally, can simply be a
wire. The proxy communicates with the rest of the system
over the secure and intrusion-tolerant Spines network. HMI
communications are similarly protected by a secure proxy.

The system also includes an intrusion detection and sit-
uational awareness component called Machine-learning As-
sisted Network Analyzer (MANA). MANA translates network
packet capture into data inputs for machine learning evaluation
and alerts users in near real-time of any highly correlated
anomalous or malicious activity. Network activity is monitored
from a situational awareness board tailored for power plant
engineers and can be viewed as part of the HMI.

III. DESIGN DECISIONS FOR DEPLOYMENT

Designing our system to withstand red team attacks led us
to take a broader view of intrusion tolerance that considers not
just the replication protocol but also the SCADA master that
runs on top of it, lower level network and operating system
protection, and intrusion detection and situational awareness.

A. SCADA Master Application

Two key differences separate our work on creating a deploy-
able replicated SCADA system from standard BFT replication:
it supports a real application that is more complex than the
basic databases normally used to evaluate BFT protocols,
and the application reflects physical state in the real world.
Therefore, the challenge is to ensure that the replicas are
not only consistent with one another, but also that their state
correctly reflects the real world.

This has two consequences for the system design. First, it
requires signaling between the replication protocol and the
SCADA application. The replication protocol orders updates
consistently, but the SCADA master applies the updates and
maintains the application-level state. Therefore, after partitions
or proactive recoveries, it is not sufficient to perform catchup
and state transfer at the replication-protocol level. The replica-
tion layer signals the SCADA master that an application-level

state transfer is required, and the SCADA masters must then
execute a state transfer protocol at the application level.

Second, due to the cyber-physical nature of the system, the
current state of the RTUs and PLCs represents the ground-truth
system state, and SCADA masters can recover this state by
polling the field devices. This interesting feature opens up the
possibility of recovering from temporary assumption breaches
in a way that is not possible for generic BFT replication. If
enough replicas crash and lose their state such that it is no
longer possible to recover the system state from the remain-
ing correct replicas, the system can automatically reset and
rebuild the state by contacting the field devices. In contrast,
a traditional BFT system cannot recover from this situation.
Note that this property only applies to the SCADA master’s
view of the active system state; SCADA historians are more
similar to traditional database applications and cannot recover
historical state automatically after an assumption breach.

B. Low-level Protection

While BFT replication overcomes SCADA master compro-
mises, it relies on several assumptions that must be supported
to provide the promised resilience; if an attacker can subvert
these assumptions, the intrusion-tolerant protocols are not
useful. First, the assumption that no more than the tolerated
threshold of replicas (f ) will be compromised must be sup-
ported by securing the operating system. While we employ
application-level diversity, if all replicas run an operating
system with known vulnerabilities, those can be exploited by
an attacker to gain control of the entire system. Because of this,
we deploy all system components (SCADA master replicas,
HMI, RTU/PLC proxy) on the latest minimal CentOS server
installations. This required considerable work to port system
components designed to run on Ubuntu desktop installations,
namely the HMI graphics packages and the PLC communi-
cation libraries. The CentOS server is essentially closed by
default, with only external communication that is specifically
allowed being permitted, while the Ubuntu desktop runs many
preinstalled services and has an open philosophy by default.

Second, there is an assumption that system components can
communicate. Specifically, the replication protocol assumes
that 2f + k + 1 correct replicas can communicate with one
another, and the SCADA system assumes that at least one
correct SCADA master can communicate with the HMI and
RTU/PLC proxies and that the proxies can communicate with
their RTUs and PLCs. We support this assumption through
a secure network setup. As the first step, we configured the
firewall of each machine to block all incoming and outgoing
traffic other than the specific IP address and port combinations
used by our protocols and turned off IPv6 (since we were not
using it). Next, we took steps to prevent man-in-the-middle
attacks: on each machine, we set up a static mapping of MAC
addresses to IP addresses and turned off the default ability for
a NIC to answer ARP requests for an IP address assigned
to another NIC on the same machine. On the switch, we
configured a static mapping of MAC addresses to switch ports.

3



Fig. 3. Experimental setup for red team exercise.

To provide further defense-in-depth, we physically isolate
the network used for the SCADA masters’ replication protocol
from the external network used to communicate with the other
system endpoints. This prevents an external attacker from
disrupting the replication protocol; they must first compromise
one of the replicas to gain network access. For the connection
between the PLC proxy and its PLC, we use a physical cable,
as opposed to a logical connection through a network switch
to ensure that it is not subject to any outside interference.

In Section IV, we show how these design choices were
crucial in preventing an experienced red team from interfering
with our SCADA system’s operation.

C. Operations-Based Intrusion Detection

Due to the operational nature of SCADA environments,
network intrusion detection must be applied differently than in
traditional enterprise networks. First, the monitoring systems
must be completely non-invasive so that the availability of
SCADA systems is never in doubt; power plant engineers
approved the use of the MANA IDS only because it oper-
ated out-of-band, receiving a passive network traffic packet
capture. Second, the IDS must handle the myriad of custom
and proprietary protocols used by the equipment vendors.
Traditional signature-based and deep-packet traffic inspectors
are not equipped to effectively inspect unknown, proprietary

protocols. Also, as SCADA systems start to add encryption (as
our intrusion-tolerant protocols do), traditional network IDS
will have even less utility. To overcome this obstacle, MANA
uses machine learning and anomaly-based intrusion detection
methods, which do not rely on proprietary protocol knowledge
or unencrypted traffic. Our preparation for each deployment
involved training the machine learning models on the relevant
networks.

IV. RED-TEAM EXPERIMENT

In April 2017, our system went through a red-team experi-
ment at Pacific Northwest National Laboratory (PNNL), where
an experienced hacker team from Sandia National Laboratories
with nation-state-level expertise attacked both a commercial
SCADA system set up according to NIST-recommended best
practices and our intrusion-tolerant SCADA system.

A. Setup and Preparation

Figure 3 shows the network architecture that was set up
by PNNL to model a typical power company network with
input from the power company hosting the test deployment
in Section V. This architecture includes an enterprise net-
work that hosts the SCADA historian (PI Server) as well
as other machines used in day-to-day business operation.
The enterprise network is separated by a firewall from the

4



operations network where the SCADA system operates and
communicates with field devices.

This experiment used two parallel operations networks: the
first (on the right in Figure 3) hosted a commercial SCADA
system, while the second (on the left in Figure 3) hosted Spire.
Spire was configured with four SCADA master replicas to
withstand one intrusion (note that the system was not set up
to support automatic proactive recovery, as six replicas are
needed to support proactive recovery with bounded delay).
As described in Section III-B, replicas communicated with
one another on the isolated Spines Internal network and with
the other system components on the Spines External network.
A PLC using the Modbus communication protocol was con-
nected to the network through a direct cable connection to the
PLC proxy.

The MANA IDS was run separately on an out-of-band
network that received the network packet capture from the
enterprise and two parallel operations networks. Due to the
distinct network characteristics of the three networks, we chose
to run three independent MANA instances, labeled MANA 1-
3 in Figure 3, and to develop three specific network models
instead of a single generic one.

Prior to the deployment, we received a specification of the
PLC from the PNNL engineers. To integrate the PLC with our
system, we developed a new HMI shown in Figure 4. This
HMI displayed an (emulated) power topology controlled by
the PLC, which consisted of seven breakers managing the flow
of power to four buildings. We also integrated the scenario
into our SCADA master so that it could maintain and transfer
the state correctly. In addition to this physical PLC, Spire
controlled ten emulated PLCs modeling power distribution to
several substations and remote sites.

The deployment began with one week of on-site setup and
integration. During this time, we installed our machines on
the operations network as shown in Figure 3, performed the
low-level network security steps described in Section III-B,
and trained the MANA IDS on the baseline traffic of both
the commercial SCADA system and our intrusion-tolerant
SCADA system. The machine learning IDS model training
was based on a 24-hour network packet capture that occurred
toward the end of the setup week, once the three networks
had been setup and finalized. Ideally, network traffic collec-
tion should occur for a longer period to ensure all traffic
characteristics are accounted for, but the experiment timeline
only allowed for one day. On-site, we were also required to
develop an automatic update generation tool for Spire that
would cycle through the breakers, flipping each periodically
in a predetermined cycle that the red team would attempt to
disrupt.

The rules of engagement for the experiment were that once
the systems were set up and the experiment began, we were
able to passively monitor the system’s activity but were not
allowed to take any action.

Fig. 4. HMI visualization of power topology for red team experiment.

B. Red Team Experience

The Sandia red team was first given access to the enterprise
network and began their attacks on the commercial SCADA
system. While the red-team was not expected to be able to
cause any damage from that position (due to the firewall
separating it from the operations network), surprisingly, within
only a few hours, they were able to access the operations
network and perform a memory dump of the PLC to obtain
its configuration. They then uploaded modified configuration
files, enabling them to control the PLC.

In the next stage, the red team was given direct access to
the operations network of the commercial system. From there,
they were additionally able to disrupt communication between
the HMI and the SCADA server, sending modified updates to
the HMI and preventing correct updates from being received.
These successful attacks clearly demonstrated that the nation’s
power grid is vulnerable; current best practices provide only
weak protection against a nation-state-level attacker.

The red team next attempted to attack the Spire system,
starting from the same position in the enterprise network from
which they had taken control of the commercial system’s PLC.
However, after a couple hours, they reported that they had
no visibility into the system and asked to be placed directly
on the operations network. Over two days, we observed the
red team launching network attacks including port scanning,
ARP poisoning, IP address spoofing, and denial of service
attempts involving bursts of traffic. Other attacks that were
not directly observable may have been attempted as well.
However, due largely to the secure network setup described
in Section III-B and Spines authentication and encryption of
all traffic, none of these attacks were successful. The static
mappings of MAC addresses to IP addresses and switch ports
were especially important in preventing the man-in-the-middle
attacks that the red team used in the commercial system, as
was the architectural choice of placing the PLC behind a
secure proxy, rather than directly on the network.

Finally, on the third day of the experiment, we conducted an

5



excursion in which the red team was given gradually increas-
ing control of one of the SCADA master replicas (a situation
Spire is designed to withstand) as well as access to Spire’s
source code. This excursion began with user-level access to
one replica. The red team first stopped the Spines daemons
running on this replica, preventing it from communicating with
the rest of the system, but this had no effect; the replicated
system can tolerate the loss of any one replica. When the red
team restarted the Spines daemon, they ran a custom version
they had modified to exploit a vulnerability found in the latest
(at the time) open-source version of the Spines codebase;
however this had no effect due to newly added encryption that
prevented the modified daemon from communicating with the
other replicas.

The red team then tried to gain root-level access through
known exploits of a shared memory vulnerability in the
Linux kernel (dirtycow) and the SSH daemon, but neither was
successful due to the use of the latest version of CentOS that
had removed those vulnerabilities.

In their final user-level attack, the red team patched the
Spines binary on their replica to add in the exploit they had
discovered. While this patched version was accepted as a valid
member of the network, the attack did not have an effect on
the other Spines daemons, as it was in a portion of the code
that is disabled when Spines is run in intrusion-tolerant mode.

At that point, the red team was given root access to the
machine as well as the latest system source code. They
primarily focused on Spines, testing the code in their own
lab and attempting attacks there to try to break the fairness
properties of the intrusion-tolerant network as a trusted mem-
ber of the network. Despite this level of access, the red team
was still unable to disrupt Spire’s operation, demonstrating
the effectiveness of its intrusion-tolerant approach. While this
result does not mean that given more time, the red team
would not have been able to cause damage, it shows that
there is a significant difference between current industry best
practices and a research-based solution designed to withstand
sophisticated system and network attacks.

V. POWER PLANT TEST DEPLOYMENT

In January 2018, we deployed our system in a “mothballed”
steam-turbine power plant. While this plant was not actively
generating power (as it was no longer needed to meet demand)
it had active control systems that were connected to the grid.
The goal of this test deployment was to verify that the system
could function in a power grid environment without degrading
SCADA performance and without adverse effects on the other
power plant systems.

The deployment again began with a week-long setup and
integration period. While the red team experiment described
above involved controlling a real PLC with emulated break-
ers, in this deployment the Spire intrusion-tolerant SCADA
system controlled a real PLC connected to real breakers. The
engineers at the power plant created a subset of the topology
shown in Figure 4, including the three breakers on the left
of the figure (B10-1, B57, B56). During the setup period, we

again built a new HMI to display this power topology and
integrated its state into our SCADA master.

This deployment included six diverse SCADA master repli-
cas to simultaneously support one intrusion and one proactive
recovery while maintaining continuous correct operation with
guaranteed performance (bounded delay for update execution).
A PLC proxy was used to communicate with the PLC using
the Modbus communication protocol, similarly to the setup of
the red team experiment.

In addition to the physical part of the system, there was
again an emulated portion, including the same ten emulated
PLCs as in the red team experiment (for the larger distribution
scenario), as well as six new emulated PLCs modeling a power
generation scenario that we created and adapted based on input
from the plant engineers.

MANA was set up similarly to the red team experiment but
only received network traffic from the operations network (and
not from an enterprise network). The plant networked systems
employed proprietary SCADA communication protocols that
utilized short constant system updates that proved to be ideal
for machine learning and anomaly modeling; training required
only a single 12-hour packet capture.

After setup and integration with the power plant, Spire
and MANA were continuously deployed without interruption
or adverse effects on the plant systems for six days. Spire
successfully managed the small power topology (along with
the two emulated scenarios), displaying the system status
and allowing it to be controlled via HMIs in three locations
throughout the plant. MANA provided power plant engineers
with complete network visibility and situational awareness.

On the last day, plant engineers deployed a measurement de-
vice to evaluate the end-to-end reaction time of the commercial
SCADA system in the power plant and of Spire. The device
periodically flipped a breaker and used two sensors to detect
when the HMI screens of the two systems updated to reflect the
change. For this test, we adapted the HMI to include a large
box that changed from black to white based on the breaker
state so that the sensor could easily detect the HMI update.
The measurements showed that Spire successfully met the
timing requirements of the plant engineers, and was even able
to reflect changes more quickly than the commercial system.

VI. LESSONS LEARNED

Our experiences deploying intrusion-tolerant SCADA re-
sulted in lessons in three dimensions: technical lessons, lessons
related to conducting a successful red team experiment and
deployment, and longer-term lessons related to transitioning
intrusion-tolerant technology in the power industry.

A. Technical lessons

The low level setup in Section III-B is far from the topics
considered in most academic papers, but all of these steps need
to be taken before sophisticated intrusion-tolerant protocols
can even have a chance to be relevant. If an attacker can
circumvent the protocols at a lower level, they can break the
(often implicit) assumptions the protocols rely on.

6



Our red team experience highlighted the point that the
network is a major attack vector that is often overlooked.
Low-level network attacks do not require any protocol- or
domain-specific knowledge and are a common strength of
experienced hacker teams. We saw that the red team’s first
line of attack was to attempt low-level man-in-the-middle and
denial of service attacks; if we had not performed the low-
level network setup described in Section III-B (including both
the switch set up and the architecture of using two separate
networks and putting the PLC behind a proxy), the red team
would likely have been able to succeed in at least causing a
denial of service without even attempting attacks at the Spines
or SCADA system levels.

Similarly, at the operating system level, our effort in porting
all system components to the latest minimal CentOS server
version was important in preventing the red team from easily
escalating their privilege level once they were given access to
one of the replicas.

From a defense-in-depth perspective, we also learned that
we could have improved the way we compiled and ran our
code to make the attackers’ job harder. One factor that helped
the red team patch the Spines binary with their attempted
exploit was the fact that we had compiled the code to in-
clude debugging symbols. While stripping symbols from the
executable would not prevent the red team from patching
the binary, it would increase the time required to execute
the attack. Similarly, during a debrief the red team explained
that specifying options to the program through commandline
parameters and a configuration file made it easier for them
to understand what was running once they got access to a
SCADA master replica; compiling these options into the pro-
gram would make their information gathering more difficult.

B. Lessons for Successful Red Team and Deployment

Beyond the technical, we learned several lessons about how
to prepare for and execute these types of experiments and
deployments successfully. One of the key lessons was the
importance of establishing rapport and personal connections
well ahead of the actual experiment. Compared with three
previous red team experiments that our group has taken part in
over the years (with different systems), this one was somewhat
less open and collaborative, which may have been partially due
to the fact that the red team was physically located off-site.
While this setup more realistically models the threat posed
by remote cyberattacks, the ability to interact with the red
team in person would have improved our ability to understand
the exact attacks they carried out (which we mainly learned
about from MANA, on-site monitoring, and a post-experiment
debrief) and may have enabled them to launch a wider range
of protocol-specific attacks once the low-level attacks had
failed. The ability to work with power plant engineers in the
second deployment experience led to a mutually beneficial
experience that improved both sides’ understanding of how
our technology fits into the operation of a real power plant.

We also learned that the emerging open-source SCADA
ecosystem has made it possible to effectively prepare for such

experiments using emulation. Prior to the red team experiment,
Spire had never been tested with a real PLC, but we were able
to test the system end-to-end using OpenPLC [17] to emulate
PLCs on Linux. This allowed us to set up the system in our
lab and then transition to the real PLC in the deployment with
only minimal changes.

Despite the ability to prepare via emulation ahead of time,
both deployments required short-notice on-site development
to make them a success. Both deployments were intensive
two-week experiences, where the first week was devoted to
setup, integration, and final development. These development
and test environments were also significantly different from
the normal environments we were used to, including a national
lab with restricted Internet and phone use, as well as a power
plant where protective personnel equipment (safety glasses,
hard hats, steel-toed boots) was required at all times when
moving between rooms.

C. Lessons for Transition in the Power Industry

The power plant deployment highlighted the complex nature
of power grid monitoring and control systems today and
the need for close collaboration with the power industry to
develop holistic solutions. In contrast to a single monolithic
SCADA system, the power plant included several distinct sub-
systems for generation and transmission. While our intrusion-
tolerant SCADA system successfully controlled a small piece
of a transmission topology, much more collaborative work is
needed to understand the full power plant system architecture
and design a holistic architecture for intrusion tolerance.

Moreover, given the conservative nature of the industry, an
incremental transition approach is necessary to gain the trust
of power grid operators and decision makers and mitigate con-
cerns over introducing changes into systems where reliability
is critical. The participation of the power plant engineers in the
design of the red team experiment was essential in building
their trust for the power plant deployment, and that deployment
takes a first step toward building the confidence needed for
ultimate transition, although this is likely to be a long process.

VII. RELATED WORK

Previous work has used intrusion-tolerant replication to
create SCADA systems that are resilient to SCADA mas-
ter compromises and addressed many of the challenges of
adapting real SCADA applications to fit the state machine
replication model. However, to the best of our knowledge,
none of these systems have been tested by a nation-state-level
red team or deployed in a power plant.

Zhao et al. [4] use PBFT [10] with four replicated SCADA
controllers and show that a simulated power grid scenario in
a LAN can meet the required sub-second sampling rate of
SCADA operations. Kirsch et al. [6] use Prime [11] to add
intrusion tolerance to a Siemens SCADA product in a proto-
type implementation. Medeiros proposes a fault- and intrusion-
tolerant architecture for the EDP Distribuicao SCADA sys-
tem [5] that leverages knowledge of the Portuguese electric

7



grid to analyze the proposed architecture’s ability to reduce
downtime of SCADA services caused by benign faults.

Nogueira et al. [8] implement SMaRt-SCADA, an intrusion-
tolerant prototype that integrates Eclipse NeoSCADA [18]
with BFT-SMaRt [19]. The authors identify several challenges
with making a traditional SCADA master support intrusion-
tolerant replication, which they overcome by using proxies that
serialize all messages and logical timeouts that synchronize
timeouts across different replicas.

The BFT-SMaRt library underlying SMaRt-SCADA has
also addressed the state transfer and state management chal-
lenges of supporting real applications that must tolerate par-
titions and proactive recoveries [20], allowing it to provide a
BFT ordering service for the Hyperledger Fabric blockchain
platform [21]. BFT-SMaRt provides a generic interface for
persistent state management and transfer. In contrast, our
approach is not generic but is tailored for SCADA systems
where the state of field devices represents the ground-truth;
this makes it possible to recover from temporary assumption
breaches and does not require persistent state.

VIII. CONCLUSION

We have described our experience deploying intrusion-
tolerant SCADA in a nation-state-level red team experiment
and a power plant test deployment for the first time. These ex-
periences offered technical lessons in supporting the assump-
tions of intrusion-tolerant protocols and employing defense-in-
depth (integrating low-level security, protocol-level intrusion
tolerance, and intrusion detection), as well as meta-lessons for
experimentation and transition in the power industry.

ACKNOWLEDGEMENT

We thank David Rolla, Bryan Tepper, John Tica, Keith
Webster, and the rest of the team at the Hawaiian Electric
Company for their strong support throughout this work. We
thank Jim Brown, Cliff Eyre, David Linneman, and the rest
of the team at Pacific Northwest National Lab for hosting and
managing the red team experiment. This work was supported
in part by DoD Environmental Security Technology Certifica-
tion Program (ESTCP) Project EW-201607 to Resurgo LLC.
Its contents are solely the responsibility of the authors and do
not represent the official view of the Department of Defense.

REFERENCES

[1] A. N. Bessani, P. Sousa, M. Correia, N. F. Neves, and P. Verissimo,
“The crutial way of critical infrastructure protection,” IEEE Security &
Privacy, vol. 6, no. 6, pp. 44–51, Nov 2008.

[2] S. Zonouz, J. Rrushi, and S. McLaughlin, “Detecting industrial control
malware using automated plc code analytics,” IEEE Security & Privacy,
vol. 12, no. 6, pp. 40–47, Nov 2014.

[3] D. Shelar, P. Sun, S. Amin, and S. Zonouz, “Compromising security of
economic dispatch in power system operations,” in IEEE/IFIP Int. Conf.
Dependable Systems and Networks (DSN), June 2017, pp. 531–542.

[4] W. Zhao and F. E. Villaseca, “Byzantine fault tolerance for electric
power grid monitoring and control,” in Int. Conf. Embedded Software
and Systems, July 2008, pp. 129–135.

[5] N. A. C. Medeiros, “A fault- and intrusion- tolerant architecture for
EDP distribuicao SCADA system,” Master’s thesis, University of Lisbon,
2011.

[6] J. Kirsch, S. Goose, Y. Amir, D. Wei, and P. Skare, “Survivable SCADA
via intrusion-tolerant replication,” IEEE Trans. Smart Grid, vol. 5, no. 1,
pp. 60–70, Jan 2014.

[7] A. Babay, T. Tantillo, T. Aron, M. Platania, and Y. Amir, “Network-
attack-resilient intrusion-tolerant scada for the power grid,” in Proceed-
ings of the IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), June 2018, pp. 255–266.

[8] A. Nogueira, M. Garcia, A. Bessani, and N. Neves, “On the challenges
of building a bft scada,” in 2018 48th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), June 2018,
pp. 163–170.

[9] “Spire: Intrusion-tolerant scada for the power grid,” http://www.dsn.jhu.
edu/spire/, access: 2019-01-15.

[10] M. Castro and B. Liskov, “Practical Byzantine fault tolerance and
proactive recovery,” ACM Trans. Comput. Syst., vol. 20, no. 4, pp. 398–
461, Nov. 2002.

[11] Y. Amir, B. Coan, J. Kirsch, and J. Lane, “Prime: Byzantine replication
under attack,” IEEE Trans. Dependable and Secure Computing, vol. 8,
no. 4, pp. 564–577, July 2011.

[12] A. Homescu, S. Neisius, P. Larsen, S. Brunthaler, and M. Franz, “Profile-
guided automated software diversity,” in IEEE/ACM Int. Symp. Code
Generation and Optimization (CGO), Feb 2013, pp. 1–11.

[13] Secure Systems Lab, “Multicompiler,” https://github.com/
securesystemslab/multicompiler, access: 2018-11-19.

[14] T. Roeder and F. B. Schneider, “Proactive obfuscation,” ACM Trans.
Comput. Syst., vol. 28, no. 2, pp. 4:1–4:54, Jul. 2010.

[15] P. Sousa, A. Bessani, M. Correia, N. F. Neves, and P. Verissimo, “Highly
available intrusion-tolerant services with proactive-reactive recovery,”
IEEE Trans. Parallel Distrib. Syst., vol. 21, no. 4, pp. 452–465, 2010.

[16] D. Obenshain, T. Tantillo, A. Babay, J. Schultz, A. Newell, M. E. Hoque,
Y. Amir, and C. Nita-Rotaru, “Practical intrusion-tolerant networks,” in
IEEE Int. Conf. Distrib. Comput. Syst. (ICDCS), June 2016, pp. 45–56.

[17] T. Alves, “The OpenPLC project,” http://www.openplcproject.com/, ac-
cess: 2018-12-05.

[18] “Eclipse neoscada,” http://www.eclipse.org/eclipsescada/, access: 2018-
12-04.

[19] A. Bessani, J. Sousa, and E. E. P. Alchieri, “State machine replication
for the masses with bft-smart,” in 44th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, June 2014, pp. 355–
362.

[20] A. N. Bessani, M. Santos, J. Felix, N. F. Neves, and M. Correia, “On
the efficiency of durable state machine replication,” in USENIX Annual
Technical Conference, June 2013, pp. 169–180.

[21] J. Sousa, A. Bessani, and M. Vukolic, “A byzantine fault-tolerant
ordering service for the hyperledger fabric blockchain platform,” in 48th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), June 2018, pp. 51–58.

8

http://www.dsn.jhu.edu/spire/
http://www.dsn.jhu.edu/spire/
https://github.com/securesystemslab/multicompiler
https://github.com/securesystemslab/multicompiler
http://www.openplcproject.com/
http://www.eclipse.org/eclipsescada/

	Introduction
	System Overview
	Design Decisions for Deployment
	SCADA Master Application
	Low-level Protection
	Operations-Based Intrusion Detection

	Red-Team Experiment
	Setup and Preparation
	Red Team Experience

	Power Plant Test Deployment
	Lessons Learned
	Technical lessons
	Lessons for Successful Red Team and Deployment
	Lessons for Transition in the Power Industry

	Related Work
	Conclusion
	References

