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Byzantine Fault Tolerant (BFT) protocols have the ability to work correctly even when up to a threshold
f of system servers are compromised. This makes them appealing for the construction of critical systems
connected to the Internet, which are constantly a target for cyber attacks.

BFT protocols differ based on the kind of application, deployment settings, performance, access control
mechanisms, number of servers in the system, and protocol implementation. The large number of protocols
present in the literature and their differences make it difficult for a system builder to choose the solution
that best satisfies the requirements of the system that he wants to build. In particular, the main difference
among BFT protocols lies in their system models: server-side versus client-side. In the server-side model
each client relies on the system to consistently order and replicate updates, while in the client-side model
each client actively participates in the protocol.

In this article, we classify BFT protocols as server-side or client-side. We analyze the trade-offs between
the two models, describe systems that use these models and the trade-offs they choose, highlight the research
gaps, and provide guidelines to system builders in order to choose the solution that best satisfies their needs.
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1. INTRODUCTION

Byzantine Fault Tolerant (BFT) protocols guarantee the correct execution of operations
even when up to a threshold f of servers show arbitrary (i.e., Byzantine) behavior. This
makes BFT protocols an appealing building block for the construction of intrusion-
tolerant systems. Nowadays many distributed systems, such as clouds and critical
infrastructures, are connected to the Internet, and thus are a possible target for cyber
attacks. As such, the ability to withstand faults provoked by an attack is paramount.
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The problem of agreeing on a binary value in a Byzantine environment [Pease et al.
1980] was later generalized to the Byzantine Generals problem [Lamport et al. 1982]
(see Section 2). In the last 20 years, a large number of BFT protocols have been pre-
sented. PBFT [Castro and Liskov 1999] was the first to demonstrate that BFT protocols
can have good performance and be practical. After that, many BFT protocols were pro-
posed with the goal of optimizing normal-case performance. They either use speculative
execution [Kotla et al. 2007], rely on a replier set known in advance [Serafini et al. 2010;
Abd-El-Malek et al. 2005], or achieve optimal latency by integrating a consensus primi-
tive with a state machine replication protocol [Sousa and Bessani 2012]. Recently, some
protocols have been proposed that focus on how to guarantee performance while under
attack. Prime [Amir et al. 2008] and BFT-Mencius [Milosevic et al. 2013] execute client
operations within a bounded delay when the network is synchronous enough, while
Aardvark [Clement et al. 2009b] guarantees that under attack the system reaches a
throughput that is within a constant factor of the throughput that the system reaches
under normal operations.

The BFT protocols mentioned previously differ from each other based on the
specific applications and their requirements, such as performance, scalability over
geodistributed systems, message authentication, number of servers in the system, and
protocol implementation. As an example, PBFT can execute thousands of operations
per second in the absence of attacks when deployed on a local cluster, while Q/U
[Abd-El-Malek et al. 2005] scales better than PBFT in terms of performance on wide
area networks, due to loose synchronization among servers. On the other hand, Q/U
requires 5 f + 1 servers in the system, while PBFT requires only 3 f + 1 servers,
which is the minimum number of servers required to solve consensus in a Byzantine
environment [Pease et al. 1980].

However, the main difference among these protocols lies in their system models. We
divide current BFT protocols into two categories: server side and client side.1 This
distinction takes into account the role that clients play during the execution of the BFT
protocol.

In the server-side model the clients do not actively participate in the protocol execu-
tion. A client only sends a request to one or more servers and waits to receive at least
f + 1 identical replies from different servers before completing the request. The BFT
protocol is completely run by the servers. Typically, one of these plays the role of the
leader and initiates a protocol round when it receives a client request directly from
that client or from some other server in the system. Then, servers exchange messages
to reach an agreement on the order in which client operations should be executed.

In contrast to the server-side model, in the client-side model the clients actively
participate in the protocol. The role played by the clients depends on the kind of
application. Clients may act either as proposers [Malkhi and Reiter 1998c; Abd-El-
Malek et al. 2005], repairers [Kotla et al. 2007; Serafini et al. 2010; Abd-El-Malek
et al. 2005], or both [Abd-El-Malek et al. 2005]. When the clients act as proposers, they
initiate a round of the protocol by proposing a sequence number for the next operation
they want to execute. This model is typically adopted by applications in which the same
resource is updated by a single client or a few clients. When the clients act as repairers,
they drive system reconfiguration in case of conflicting updates or server failures.

The motivation for our work is that including clients in the computation extends the
boundaries of the system, which has an impact on many factors, such as

—Security: the impact of malicious client and how the system should be protected;
—Protocol configuration: the protocol implementation and its parameters (e.g., number

of servers) and how these change when clients are part of the system; and

1We consider the terms server side and client side to convey a loose, conceptual pedagogical classification
rather than a formal definition.
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—Performance: how the performance of the system improves when part of the job is
shifted to the client side.

In this article, we analyze many BFT protocols present in the literature and classify
each as server side or client side. For both approaches we present baseline protocols,
describe possible attacks on them, and show how different BFT protocols cope with
malicious attacks or propose strategies that improve the performance of the system.
We also provide a description of the trade-offs between server-side and client-side
models and how existing applications chose those trade-offs. Our ultimate goal is to
provide guidelines to system builders to help them choose the best model (server side
or client side) based on the requirements of the system that they want to build. Hence,
we provide an analysis from a system-oriented point of view, which is orthogonal to
previous work [Merideth and Reiter 2010; Dantas et al. 2007] that categorizes BFT
protocols as quorum-based or state machine replication approaches.

Note that some BFT protocols described in the literature [Guerraoui et al. 2010;
Cowling et al. 2006] include aspects of both models. They follow the client-side approach
during normal-case executions to improve the performance of the system and switch
to the server-side model to resolve conflicts. Based on the definitions of server-side and
client-side models (see Section 3), in this article we label them as client side because
clients actively participate in the protocols by acting as proposers or repairers.

The remainder of the article is organized as follows. Section 2 introduces the BFT
problem. Section 3 defines server-side and client-side systems, and the attack model
we consider throughout the article. Sections 4 and 5 describe the reference server-
side and client-side protocols, respectively. Section 6 presents two hybrid protocols
and motivates why we label them as client side. Section 7 describes applications that
use the server-side or client-side models, highlighting the differences between these
models. Section 8 presents the trade-offs between the two models and how different
applications made choices. Section 9 discusses the main aspects that a system builder
should consider for building a practical BFT application, based on the lessons we learn
in this work. Finally, Section 10 concludes the article.

2. THE BFT PROBLEM

The BFT problem was introduced by Pease et al. [1980]. The article discusses how to
reach agreement in a system with n processors, where at most f of them can be faulty.
Each correct processor i communicates a private value vi to all other correct processors,
while faulty processors may lie.

The goal of the article is to devise an algorithm that guarantees interactive consis-
tency [Pease et al. 1980], that is, each correct processor has to compute a vector of
values, one for each processor, such that

(1) correct processors compute the same vector; and
(2) the value vi corresponding to a correct processor i is the private value of that

processor.

Because of point (1), every correct processor must compute exactly the same value
for each faulty processor. These values can be arbitrary. The article demonstrates that
a solution to this problem requires n ≥ 3 f + 1 processors, and shows impossibility
results for n ≤ 3 f .

The BFT problem [Pease et al. 1980] has been generalized later to the Byzantine
Generals problem [Lamport et al. 1982]: a group of Byzantine Generals, some of whom
may be traitors, surround an enemy city and must agree on a plan of action. This
problem is used to abstract a reliable computer system that must be able to cope with
the failure of one or more components.
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3. DEFINITIONS

In this section, we categorize server-side and client-side systems. We consider the terms
server side and client side to convey a loose, conceptual pedagogical classification rather
than a formal definition. Moreover, we present the attack model that we will use in the
next sections to show vulnerabilities of BFT protocols.

3.1. Server-Side and Client-Side Systems

—Server-side system: We say a system is server side if clients only send requests to
one or more servers and wait for replies from multiple servers.

—Client-side system: We say a system is client side if clients may act either as
proposers, repairers, or both. A proposer is an entity that initiates an ordering round
by proposing a sequence number for the operation that it wants to execute. A repairer
is an entity that drives system reconfiguration when the normal case execution of
the BFT protocol fails.

The main difference between these two approaches is that in server-side systems
the clients do not actively participate in the protocol; they submit requests and wait
for the servers to complete the execution. On the contrary, in client-side systems the
clients actively participate in the protocol execution by playing one or more roles (i.e.,
proposer, repairer). We will describe in the next sections how this paradigm change
affects security, protocol configuration, and system performance.

3.2. Attack Model

We consider a powerful adversary that can compromise clients and servers, delay
the sending and receipt of messages of compromised nodes (clients or servers), but
cannot delay messages exchanged by correct nodes. We assume that the adversary is
computationally bounded and cannot subvert the cryptographic assumptions that the
BFT protocols described in the next sections make. We group malicious attacks that the
adversary can launch into two different categories: performance attacks and correctness
attacks.

—Performance attack: We define performance attack to mean a Denial of Service
(DoS) attack that compromised clients or servers may launch to slow down system
progress.

—Correctness attack: We define correctness attack to mean an attack that compro-
mised clients or servers may launch to generate inconsistencies in the system.

In the following sections, we will describe how these attacks can affect both server-
side and client-side systems and how different BFT solutions cope with them.

4. SERVER-SIDE MODEL

BFT protocols that follow the server-side model are entirely run by servers. Clients
do not participate in the protocol execution; they only submit requests to one or more
servers and wait for at least f + 1 equal replies from distinct servers before executing
an operation. Typically, server-side BFT protocols use the state machine replication ap-
proach [Lamport 1978; Schneider 1990] for managing replicated states. Correct servers
start from the same state and modify their states only when they execute client oper-
ations (i.e., updates). State changes are deterministic: if two servers execute the same
operations in the same order, they will move through exactly the same sequence of
states. Maintaining consistent state in server-side protocols typically requires interac-
tion among servers.

An example of a server-side protocol is PBFT [Castro and Liskov 1999]. It uses
n ≥ 3 f + 1 servers, where f is the maximum number of servers that can be Byzantine.
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Fig. 1. Execution of PBFT with f = 1 and n = 4. The protocol is composed of pre-prepare, prepare, and
commit phases.

Any number of clients can be Byzantine. Clients and servers use digital signatures
[Diffie and Hellman 1976; Rivest et al. 1978] to authenticate the messages they send.
The service uses a client’s identity to deny access to a client that is not allowed to
invoke an operation.

Figure 1 depicts an execution of PBFT, with n = 4 and f = 1. One of the servers plays
the role of the proposer, also known as leader. The leader initiates and coordinates an
agreement protocol that orders client updates by assigning a sequence number to each
of them.

A client sends a request to the leader and waits to receive at least f + 1 identical
replies from different servers before considering that operation to be executed. If the
client does not receive replies before the expiration of a timeout, it resends the request to
f +1 distinct servers. The ordering round consists of three phases: pre-prepare, prepare,
and commit. The pre-prepare and prepare phases order client operations within a view,
while the commit phase guarantees order across different views (i.e., when the leader
changes). The leader is replaced if the system does not make progress before the
expiration of a timeout. In this case, a new leader is elected and the timeout is doubled
(i.e., the protocol pessimistically assumes that there was not enough time to make
progress).

4.1. Possible Attacks on the System

Performance Attacks. Previous work [Amir et al. 2008] has shown that PBFT is vulner-
able to Timeout Manipulation and Pre-Prepare Delay attacks, two DoS attacks that a
malicious leader can launch to make the system progress slow.

—Timeout Manipulation: this attack exploits the fact that when the leader is replaced
the timeout doubles. A malicious client launches a DoS attack in order to slow down
the protocol and force view changes. This attack stops when the timeout is large
enough and a malicious server plays the role of the leader.

—Pre-Prepare Delay: this attack exploits the fact that the leader has to send at least
one PRE-PREPARE message before the expiration of the timeout in order to stay
in power. A malicious leader can slow down the protocol by injecting only one PRE-
PREPARE message per timeout.

The combination of these two attacks can dramatically decrease the performance of
the system. The adversary can first manipulate the timeout to grow arbitrarily, until
a malicious server plays the role of the leader. Then, the malicious leader can send
a PRE-PREPARE message just before the expiration of the timeout, such that it will
never be suspected by correct servers. Under these two attacks, PBFT may slow down
to 1% of the performance it achieves during normal operations [Amir et al. 2008]. In
the next subsection we describe how these performance attacks can be addressed so as
to guarantee good performance even in the case of compromises.
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Correctness Attacks. A correct server completes prepare and commit phases when it
receives at least 2 f + 1 PREPARE and COMMIT messages that say the same thing.
This means that if the number of faulty servers is no higher than f , the PBFT protocol
guarantees safety, that is, all correct servers maintain consistent state, and liveness,
that is, eventual progress. In the same way, if the number of faulty servers is no higher
than f , malicious clients cannot violate safety because it is impossible to find two sets
of 2 f + 1 servers that assign two different sequence numbers to the same update.
Even if a malicious client cannot leave the system in an inconsistent state [Castro and
Liskov 1999], a malicious client may still erase the state of the system by proposing
a null value (this can be avoided by having the application checking the content of an
operation before executing it).

4.2. Server-Side Model Optimizations

In this subsection, we survey some optimizations to the server-side model with the goal
of improving system security or performance. All the algorithms we present use PBFT
as the baseline agreement protocol, except for Fast Byzantine Paxos (FaB) [Martin and
Alvisi 2006], which instead extends Paxos [Lamport 1998] to tolerate Byzantine faults.

Replacing Signatures with MACs. PBFT can be configured to use Message Authen-
tication Codes (MACs) [Bellare et al. 1996] instead of digital signatures [Castro and
Liskov 2002]. MACs are computationally less expensive than digital signatures. A
server i shares a pair of keys with each other server j, and a single key with each
client. However, when using MACs instead of signatures, a faulty client can force the
replacement of a correct leader. The faulty client may send a request with a correct
authenticator to at least one correct server, while sending an incorrect authenticator
to the leader. This way, the leader cannot propose that request for ordering and will
eventually be replaced. This is a kind of DoS attack that a malicious client can launch,
generating view changes continuously to slow down the system. This problem can be
avoided by requiring clients to sign the messages they send [Garcia et al. 2013].

Proactive/Reactive Recovery. PBFT can be combined with proactive recovery [Castro
and Liskov 2002]: periodically, one server at a time is rejuvenated from a clean exe-
cution environment and application state. This way, if that server was compromised,
after rejuvenation it is once again correct.

Recovery operations can be optimized by reactively recovering servers that show
arbitrary behavior [Sousa et al. 2010]. In the proposed solution, the system is composed
of two distinct subsystems: (i) payload, and (ii) wormhole. The payload is an any-
synchronous subsystem that is composed of n = 3 f + 2k + 1 servers, where k is the
maximum number of servers that rejuvenate at the same time. The payload implements
the BFT replication engine. The wormhole is a synchronous subsystem composed of n =
3 f + 2k+ 1 trusted components connected by a synchronous and private (i.e., assumed
secure) network. At most f wormholes can crash (fail-stop). The wormhole subsystem
coordinates rejuvenations of the servers in the payload subsystem. Each server in the
payload subsystem is associated with a trusted component in the wormhole subsystem.
A server and its associated trusted component can run on the same machine or on
different machines.

Performance Guarantees while Under Attack. Prime [Amir et al. 2008], Aardvark
[Clement et al. 2009b], and BFT-Mencius [Milosevic et al. 2013] overcome the perfor-
mance limitations of PBFT under the attacks described in Section 4.1 by limiting the
power of malicious servers.

Prime ensures that, if the network is stable enough, every client operation will be
ordered by correct servers within a bounded delay that is a function of the latency
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Fig. 2. The preordering phase in Prime is used to discover a malicious leader that drops client requests.
The ordering phase works as in PBFT ( f = 1, n = 4).

among those servers. To do so, Prime servers run a background protocol that monitors
the activity of the leader and replaces a leader that is performing too slowly, according
to the current network conditions. Moreover, Prime servers run a preordering phase
to discover a malicious leader that drops client requests. A client sends a request to
one server, which includes that request in a PO_REQUEST message. Periodically, the
most recently received client requests are cumulatively acknowledged by each server
in a PO_ARU message. A correct server includes in the PO_ARU message all the client
requests that it expects from the leader during the ordering phase. If the leader skips
some of these client requests, it is suspected and replaced. The ordering phase in Prime
works as in PBFT. Preordering and ordering algorithms are shown in Figure 2.

BFT-Mencius [Milosevic et al. 2013] offers the same bounded-delay guarantee as
Prime. However, unlike Prime, BFT-Mencius is a multileader protocol that does not use
any preordering phase. BFT-Mencius relies on Abortable Timely Announced Broadcast
(ATAB) [Milosevic et al. 2013], a BFT reliable broadcast primitive that servers use
to order client updates. The implementation of the ATAB protocol is similar to PBFT,
with different servers leading different parallel instances of the protocol. With respect
to Prime, the absence of the preordering phase in BFT-Mencius reduces the number
of message exchanges. Hence, BFT-Mencius reaches a tighter upper bound on the
execution delay of client updates introduced by correct servers.

Aardvark, instead, guarantees that even in the presence of some malicious servers,
over a sufficiently long period of time the throughput remains within a constant factor
of the throughput that could be achieved if the system were composed of only correct
servers. Aardvark is built around three key principles:

(1) Resource Isolation. Separate network interface controllers (NICs) and wires are
used to connect each pair of servers. A separate NIC for clients is also used. Mes-
sages coming from different NICs are placed on different queues.

(2) Regular View Changes. The level of work expected from the leader is gradually
increased. When the current leader is not able to sustain that throughput, a new
leader is elected. Moreover, regular view changes ensure that a malicious leader is
replaced in a short amount of time.

(3) Limiting the Impact of Malicious Cclients. A decision tree is used to limit the
number of operations and resource utilization in response to requests from faulty
clients.

The agreement protocol in Aardvark is the same as PBFT (see Figure 1).

Reducing the Number of Communication Steps. Fast Byzantine Paxos (FaB) [Martin
and Alvisi 2006] extends the crash-tolerant Paxos replication protocol [Lamport 1998]
to tolerate Byzantine faults. FaB is composed of 3 f +1 proposers, 5 f +1 acceptors, and
3 f + 1 learners. Typically, one proposer, one acceptor, and one learner are deployed on
the same physical machine; hence, FaB requires 5 f +1 servers in total. In the common
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Fig. 3. Read operation with f = 1, n = 5.

case, an ordering round in FaB completes in only two phases. In the first phase, one
proposer (i.e., the leader of that ordering round) proposes a value to the acceptors. In
the second phase, the acceptors accept that value and forward it to the learners, which
learn the accepted value when they receive 4 f + 1 ACCEPT messages from different
acceptors. Compared with the BFT protocols discussed so far, FaB reduces the number
of communication rounds at the cost of 2 f additional servers in the system. Finally,
FaB uses MACs during normal case operations and digital signatures during a view
change.

5. CLIENT-SIDE MODEL

Unlike the server-side model, in the client-side model clients play an active role. They
act either as proposers (i.e., they initiate an instance of the protocol by sending an
operation and a sequence number to servers), repairers (i.e., they coordinate system
reconfiguration in case of conflicting updates or failures), or both. As we will see in the
remainder of the section, shifting part of the work to the client side requires less server-
to-server interaction and provides better scalability on Wide-Area Networks (WANs)
than server-side protocols. However, involving clients in the computation enlarges
the boundaries of the system. System builders have to provide additional security
mechanisms to prevent malicious clients from violating system correctness.

5.1. Clients as Proposers

When a client plays the role of proposer, it acts as leader of its own operations. This
approach has been used to build consensus objects [Malkhi and Reiter 1998c]. The base-
line protocol uses the abstraction of Byzantine Quorums [Malkhi and Reiter 1998a] to
mask Byzantine failures in the emulation of a distributed register. This register stores
a single-writer, multireader object for each client called timed append-only array. A
client can update its own object by appending a new value to the array in sequen-
tial order. The system requires 4 f + 1 servers, where f is the maximum number of
Byzantine servers. When the client submits an operation (read or append), it needs
to receive a consistent reply from a quorum of 2 f + 1 servers before moving on to the
next phase of the protocol. read and append operations do not require server-to-server
or client-to-client interaction. All the messages exchanged between clients and servers
are digitally signed. The read operation proceeds as shown in Figure 3: the client sends
a request to all servers in the system to read the ith element of an array and waits to
receive a consistent reply from a quorum of servers.

The append operation is shown in Figure 4. It requires three rounds:

(1) The client reads a new time stamp from a quorum of servers. Signatures of the
reply messages form a digital certificate.

(2) The client appends the ith element to its own array by proposing the new value
and the received time stamp (the client also attaches to the message the digital
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Fig. 4. Write operation with f = 1, n = 5. The client receives a new time stamp from a quorum of servers
and writes the new value to another quorum.

Fig. 5. Speculative execution in Zyzzyva ( f = 1, n = 4).

certificate collected during the first round). The client waits for digitally signed
ECHO messages from a quorum of servers (echo certificate).

(3) The client commits the append operation by sending the echo certificate back to
the servers and waits for acknowledgments from a quorum of servers.

The consensus protocol is built on top of the baseline protocol composed of read and
append operations. Each client starts the consensus protocol by proposing an initial
value and reading all the values proposed by all other clients. The protocol proceeds in
rounds: at each round, clients propose one of the values proposed in the previous round
by some client, until all clients converge to the same value. This is the value that the
consensus protocol decides. In the next section, we will see how this consensus protocol
has been used to build a Byzantine fault-tolerant coordination system called Phalanx
[Malkhi and Reiter 1998b].

5.2. Clients as Repairers

When the clients act as repairers, they drive system reconfiguration in the case of con-
flicting replies from servers or other failures. Examples of such a protocol are Zyzzyva
[Kotla et al. 2007] and Scrooge [Serafini et al. 2010].

Zyzzyva [Kotla et al. 2007] is a BFT protocol that achieves fast agreement, also
known as speculative execution, by ordering client requests in only three one-way
message rounds. The protocol requires 3 f + 1 servers and can be configured to use
digital signatures or MACs, while clients are always required to sign messages to
enforce access control.

Figure 5 shows the speculative protocol: (i) the client sends a request to the leader;
(ii) the leader proposes a sequence number; and (iii) all the other servers optimistically
accept the sequence number proposed by the leader.

The speculative execution is possible when (i) the leader is correct, (ii) the client
is honest, (iii) the network is synchronous enough, and (iv) the client receives 3 f + 1
replies. If one of these requirements fails, five communication rounds are necessary,
as shown in Figure 6. In addition to the thre rounds described previously, the client
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Fig. 6. Zyzzyva requires five rounds when the speculative execution is not possible ( f = 1, n = 4).

Fig. 7. Fast agreement in Scrooge obtained through a designated replier quorum (b = 1, f = 1, n = 4).

Fig. 8. A Scrooge client triggers explicit agreement and replier quorum reconfiguration if it does not receive
n − f replies within a timeout (b = 1, f = 1, n = 4).

builds and sends a commit certificate and waits to receive at least 2 f + 1 replies from
different servers.

Moreover, correct clients lead the system reconfiguration (i.e., view change) in the
presence of a faulty or slow leader. In case of faulty leader, a correct client can build
a proof of misbehavior to prove that it received different sequence numbers for the
same operation from the leader. When the leader is slow, a correct client resends an
unordered operation to all the servers in the system, which will forward it to the leader
and wait for the leader to start a new agreement phase within a timeout. If this does
not happen, the leader is suspected and replaced.

As with Zyzzyva, Scrooge [Serafini et al. 2010] also provides speculative execution.
The protocol requires n = 2b + 2 f servers, with f ≤ b, where b is the maximum number
of servers that can crash and f is the maximum number of malicious servers. Scrooge
uses a replier quorum of n − f servers known in advance to achieve fast Byzantine
agreement. The execution is shown in Figure 7. A client sends a request to the leader.
The leader establishes an order for that request and the servers in the replier quorum
reply back to the client.

If the client does not receive n − f replies within a timeout, it triggers an explicit
agreement phase, as shown in Figure 8. The client also provides a list of suspected
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Fig. 9. Update operation in Q/U in the absence of conflicting requests ( f = 1, n = 6).

servers to reconfigure the system and evict nonresponsive servers from the replier
quorum. The agree and commit phases are used to establish an order for the client
request and agree on a new replier quorum. Servers in the new replier quorum reply
back to the client.

5.3. Clients as Proposers and Repairers

Query/Update (Q/U) [Abd-El-Malek et al. 2005] is a client-side BFT protocol that se-
rializes query and update operations on data objects. Clients act as proposers and
repairers. In Q/U each request is processed by only a subset of servers and server-to-
server interaction is completely avoided. This makes the protocol efficient and scalable
over WANs, at the cost of 5 f + 1 servers in the system. Clients and servers may fail
arbitrarily. Moreover, each message exchanged by clients and servers carries a vector
of authenticators.

Figure 9 shows the update operation during the normal case, that is, when client
updates do not conflict. The client obtains a time stamp from a quorum of 4 f +1 servers
and sends a request operation to a quorum of servers with the obtained time stamp.

The protocol can be further optimized by requiring clients to locally store the latest
copy of the object they update, such that they do not need to read the time stamp from
a quorum of servers in successive updates. This way, the update operation completes
in only two one-way message rounds.

In the presence of concurrent update operations, correct servers may execute those
operations in a different order. As such, a correct client repairs the system bringing
correct servers in a consistent state. First, the client forces correct servers to suppress
conflicting operations; then, the client imposes the same object versions onto correct
servers.

5.4. Possible Attacks on Client-Side Protocols

Performance Attacks. Shifting part of the job onto the client side reduces both the
number of protocol rounds and the server-to-server interaction, making the protocol
more scalable on WANs. However, a malicious client may slow down the progress of the
system by continuously triggering repair phases, which are typically more expensive
than normal-case execution. For example, this happens when a malicious client fails
to contact a full quorum, forcing a correct client to repair the system at a later time.
In Zyzzyva and Scrooge, normal-case executions complete in three one-way message
rounds. Malicious clients may force additional rounds (i.e., five rounds in Zyzzyva
and seven rounds in Scrooge; see Figures 6 and 8, respectively) by dropping correct
servers replies. In Zyzzyva this problem arises also when a malicious server delays the
delivery of messages to a (possibly correct) client. Zyzzyva5 [Kotla et al. 2007] solves
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Fig. 10. Preventing inconsistencies from malicious clients in multiwriter, multireader applications. The
proposed solution [Liskov and Rodrigues 2006] requires n = 3 f + 1 servers (in this figure, f = 1, n = 4).

this problem by adding 2 f servers to the system (5 f + 1 servers in total). This way,
agreement can always be reached in three one-way message rounds.2

Correctness Attacks. The lack of server-to-server communication in client-side pro-
tocols does not allow correct servers to detect inconsistent requests from malicious
clients. A malicious client may send the same request with different sequence num-
bers to different sets of servers, leaving the system in an inconsistent state. As such,
the update phase of client-side protocols should be designed to cope with malicious
clients. As an example, PROPOSE and ECHO messages in the protocol for emulation
of consensus objects (Figure 4) guarantee that a request associated with a time stamp
is unique. This solution is suitable for single-writer, multireader protocols. A solution
has been also proposed for multiwriter, multireader protocols [Liskov and Rodrigues
2006], as shown in Figure 10.

The client reads the most recently written value. Then, it sends a signed PRE-
PARE message to all servers with the value to write. A correct server replies with
a PREPARE-REPLY message if the received PREPARE message is valid (i.e., if the
authentication succeeds). The writer collects 2 f + 1 PREPARE-REPLY messages and
sends a signed WRITE message with the value to write (the same proposed in the previ-
ous PREPARE message). A correct server replies with a WRITE-REPLY message if the
received WRITE message is valid. Finally, the writer waits for 2 f + 1 WRITE-REPLY
messages before terminating the write operation.

6. HOW TO LABEL “HYBRID” PROTOCOLS

In the previous sections, we introduced protocols that follow the server-side or the
client-side model. In this section, we describe a class of protocols that follow both
approaches at the same time, trying to get the best of both worlds. They follow the
client-side model in the absence of link/client/server failures and in the absence of
concurrent requests to speed up normal-case executions, but they switch to the server-
side model to guarantee safety and liveness in the presence of failures or conflicts.

In the remainder of this section, we first describe two protocols belonging to this
class, namely, Aliph [Guerraoui et al. 2010] and HQ [Cowling et al. 2006], and then we
motivate why they should be labeled as client side.

BFT protocols can be implemented as a collection of separate and independent in-
stances [Guerraoui et al. 2010]. The rationale behind this is that it is very difficult to
implement a single BFT protocol that achieves good performance in every scenario. By
having different instances that are optimized to work well under different conditions
(e.g., network synchrony, system load, fault model), the BFT protocol can transition

2Adding 2 f servers to the system makes Zyzzyva5 a pure server-side protocol because clients are no more
involved in repair actions.

ACM Computing Surveys, Vol. 48, No. 4, Article 61, Publication date: March 2016.



On Choosing Server- or Client-Side Solutions for BFT 61:13

Fig. 11. Quorum instance in Aliph. It runs under ideal conditions (i.e., no failures and concurrent requests).

Fig. 12. Chain instance in Aliph. It runs in the absence of failure but in the presence of concurrent client
requests.

from an instance to another in order to adapt to different scenarios, still maintaining
good performance.

Aliph [Guerraoui et al. 2010] is a BFT protocol implemented using the approach
described previously. It requires 3 f + 1 servers and is composed of three different
instances:

—Quorum: which runs in the absence of link/client/server failures and concurrent
client requests;

—Chain: which runs in the absence of link/client/server failures but in the presence of
concurrent client requests; and

—Backup: which runs in the presence of failures and concurrent client requests.

The Quorum instance follows the client-side model, as represented in Figure 11. It
runs under ideal conditions to achieve fast executions. The client acts as proposer and
repairer. It first sends a request with a time stamp to all the servers, which speculatively
execute the operation and reply to the client with a history of executed requests. In the
absence of link/client/server failures and in the absence of concurrent client requests,
Quorum requires only two one-way message transmissions.

If the histories provided by servers do not match, for example, because two concur-
rent operations have been executed in a different order by some servers, the client (as
repairer) builds an abort history that allows servers to reconstruct a consistent order of
operations. Then, the client switches to the next instance, that is, Chain, which is rep-
resented in Figure 12. Chain supports concurrent client requests by organizing servers
as a pipeline. Each server executes a client operation and forwards that operation to
the next server in the chain. The last server replies to the client.

Chain does not tolerate link or server failures. As an example, if the last server in the
pipeline is malicious, it can fail to reply to the client. Hence, if the client does not receive
a reply to its request or it receives an invalid reply, it switches to the Backup instance,
which follows the server-side model by implementing PBFT. In this way, the protocol
can tolerate up to f malicious servers and handle concurrent requests from different
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Fig. 13. Write operation in HQ. A client obtains a certificate for a new time stamp from the servers and
writes a new value by attaching the received time stamp.

clients. Backup runs K PBFT ordering rounds before switching back to Quorum, with
K being a parameter of the algorithm.

It is easy to see that a malicious client can launch the performance and correctness
attacks described in Section 5. A malicious client can violate the consistency of the
protocol by writing different values with the same time stamp to different sets of
servers during the execution of a Quorum instance. The same attack can be used to
slow down the progress of the system, by inducing servers to generate different histories
so as to abort the Quorum instance and switch to Chain. During the Chain execution,
the malicious client can discard replies sent by the last server in the pipeline, so as to
trigger Backup, the most expensive instance among the three in terms of computation
and message exchange.

Like Aliph, HQ [Cowling et al. 2006] follows the client-side model during normal-
case executions and switches to the server-side model in the presence of failures or
concurrent client requests. HQ requires 3 f + 1 servers in the system. The client acts
as proposer and repairer. The write operation is shown in Figure 13 and is composed
of two phases: (i) the client obtains a certificate containing the next time stamp to
use from the servers; (ii) the client writes a new value by attaching the received time
stamp and its certificate. In the presence of concurrency, the certificate provided by
servers may not be valid. In this case, the client switches to PBFT. Since Aliph and HQ
use PBFT as a base, their backup protocols are vulnerable to performance attacks as
shown in Section 4.1.

As with Aliph, HQ is also vulnerable to malicious clients. A malicious client can
slow down the progress of the system by continuously switching to PBFT. To do so, a
malicious client may induce servers to create invalid time stamp certificates by sending
different requests to different servers.

As we saw in this section, clients actively participate in Aliph and HQ’s executions.
According to the definitions of server-side and client-side models that we gave in Sec-
tion 3, we label these protocols as client side. A system builder that wants to use them
has to consider clients as part of the system and take additional security measures to
cope with.

7. APPLICATIONS USING SERVER-SIDE OR CLIENT-SIDE MODEL

In this section, we present some BFT applications that use the server-side or client-side
model. For each application we highlight the protocol configuration and the deployment
strategies. For applications that have been implemented on both server- and client-
side models, such as data storage systems, we highlight the trade-offs between the two
approaches in terms of performance and system configuration. Finally, we conclude
the section by presenting the differences between applications that use the server-side
model and applications that use the client-side model.
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Table I. Applications Using the Server-Side Model

Number of
Paper servers Application Deployment

Byzantine NFS [Castro and Liskov
2002]

n = 3 f + 1 Distributed BFT filesystem LAN

FARSITE [Adya et al. 2002] n = 3 f + 1 Distributed BFT filesystem LAN
UpRight Hadoop [Clement et al.

2009a]
n = 3 f + 1 Distributed BFT filesystem LAN

UpRight Zookeeper [Clement et al.
2009a]

n = 3 f + 1 Distributed BFT lock service LAN

Privacy firewall [Yin et al. 2003] n = 3 f + 1 Distributed BFT firewall LAN
CIS firewall [Sousa et al. 2010] n = 3 f + 2k + 1 Distributed BFT firewall WAN-of-LANs

BFT firewall [Roeder and Schneider
2010]

n = 3 f + 2k + 1 Distributed BFT firewall LAN

Firewall for SIEMs [Garcia et al. 2013] n = 3 f + 1 Distributed BFT firewall LAN
BFT SCADA [Zhao and Villaseca 2008] n = 3 f + 1 Intrusion-tolerant SCADA LAN
Survivable SCADA [Kirsch et al. 2014] n = 3 f + 1 Intrusion-tolerant SCADA LAN

7.1. Server-Side Applications

Table I reports some applications that use the server-side BFT model.
The server-side model has been adopted to build applications like distributed file

systems [Castro and Liskov 2002; Adya et al. 2002; Clement et al. 2009a], distributed
locking services [Clement et al. 2009a], distributed firewalls [Sousa et al. 2010; Roeder
and Schneider 2010; Garcia et al. 2013], and intrusion-tolerant SCADA systems [Zhao
and Villaseca 2008; Kirsch et al. 2014].

The Network File System (NFS) has been replicated using PBFT to make it intrusion
tolerant [Castro and Liskov 2002]. The NFS is composed of 3 f +1 servers, while clients
use a BFT client library to communicate with the file system. The BFT protocol is used
to serialize the access of multiple clients and operations to files.

FARSITE [Adya et al. 2002] is a replicated file system that achieves reliability and
data integrity through BFT. The assumed workload consists of high access locality,
low update rate, and read/write operations that are typically sequential and rarely
concurrent. The BFT protocol is used to consistently replicate files across the system.
A local cache on the client side is used to improve the performance of read operations.

Distributed BFT firewalls aim to protect a network from two different attacks:
(i) external attackers that try to inject malicious packets into the network; and (ii) an
internal attacker that tries to manipulate the firewall filtering rules. The OpenBSD
packet filter, pf , has been replicated to tolerate malicious intrusions [Roeder and
Schneider 2010]. The firewall uses PBFT as a replication engine, proactive recovery to
increase the resiliency of the system, and leader rotation [Dwork et al. 1988] to reduce
the delay that can be introduced by malicious leaders. In this work, leader rotation
is enhanced with leader adjustment: correct servers skip over rejuvenating servers in
leader rotation, so as to elect as leader only the servers that are currently in the system.

The hybrid wormhole-payload approach [Sousa et al. 2010] described in Section 4
has been used to build a firewall-like protection service for Critical Infrastructures
called CIS. CIS follows a hybrid deployment approach. BFT firewalls in different local
clusters are connected through wide-area links to build a protection mechanism that
spans multiple geographic locations. Each payload intercepts all packets destined to
the Local-Area Network (LAN) in order to verify if they respect some specified security
policies. Every accepted packet is signed by the local wormhole. Wormholes are trusted
components connected through a private network. They implement a voting mechanism
to approve messages before forwarding them to the application.
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A BFT firewall has also been built for protecting Security Information and Event
Management (SIEM) systems [Garcia et al. 2013]. This firewall has two filtering com-
ponents: (i) prefilters, which perform basic filtering actions and use Byzantine total
order multicast [Sousa and Bessani 2012] to forward accepted messages to the filters;
and (ii) filters, which implement a state machine replication service to filter messages
based on application knowledge. Each filter applies exactly the same rules to the mes-
sages received from prefilters.

Unlike the firewalls described previously, which aim to prevent the injection of ma-
licious messages and the manipulation of filtering rules, a BFT firewall has also been
used to protect the confidentiality of information [Yin et al. 2003]. Typically, clients
of a server-side BFT protocol implement a voting scheme that selects f + 1 matching
replies from different replicas before executing an operation. However, this does not
protect against a malicious server that leaks sensitive information from the system
and sends it to a malicious client as a reply message. The main innovative aspect of
this work is that agreement is separated from execution. A set of 3 f + 1 servers form
a BFT agreement engine that can be shared across multiple applications. The protocol
used is BASE [Rodrigues et al. 2001], a library that integrates PBFT with data ab-
straction techniques to mask potential software errors. Clients communicate only with
the servers of the agreement engine. A set of 2g + 1 servers, where g is the maximum
number of Byzantine servers, form the execution engine, which is specific to the ap-
plication they implement. Note that, because servers in the execution engine do not
run any agreement protocol, the cost of replication is reduced. Servers in the execution
engine are the only ones to apply changes to the application state. The privacy firewall
lies in between the agreement engine and the execution engine. It is composed of h+ 1
rows with h + 1 filters each, where h is the maximum number of Byzantine filters.
Filters in row i, with 2 ≤ i ≤ h, communicate with filters in row i − 1. Filters in row 1
communicate directly with servers in the agreement engine, while filters in row h + 1
receive replies from the servers in the execution engine. This structure guarantees that
there is at least one path composed of only correct filters that connects the execution
engine to the agreement engine. Filters in the privacy firewall use threshold cryptogra-
phy to build a certificate for each correct reply and forward it to the agreement engine
(the reply will eventually reach the client). Incorrect replies that may contain sensitive
information are discarded along the path by correct filters.

The UpRight Cluster Service [Clement et al. 2009a] also benefits from the separation
between agreement and execution. The UpRight agreement module implements a fast
ordering protocol similar to Zyzzyva and ensures robust performance even in the pres-
ence of failures by using client request validation, resource scheduling, and request
filtering as in Aardvark. Unlike Zyzzyva, where clients drive system reconfiguration,
in UpRight possible conflicts that may happen during the agreement phase are solved
by agreement servers when they checkpoint their states.

UpRight is used to implement a Zookeeper-like [Hunt et al. 2010] locking service and
a Hadoop-like [Shvachko et al. 2010] BFT distributed file system. UpRight-Zookeeper
replaces the Paxos-like [Lamport 2001] replication protocol in the original Zookeeper
with the UpRight replication protocol described previously. Other modifications include
checkpointing the application state in a deterministic manner across system servers
using copy-on-write techniques. UpRight-HDFS enhances the original Hadoop File
System (HDFS) by supporting redundant NameNodes (a NameNode is the entity that
stores <filename, block ID> mappings), eliminating single points of failures. UpRight-
HDFS is also resilient to faulty clients, NameNodes, and DataNodes (i.e., the entities
that store data blocks).

PBFT and Prime have been used to build intrusion-tolerant SCADA systems [Zhao
and Villaseca 2008; Kirsch et al. 2014]. SCADA stands for Supervisory Control And
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Table II. Applications Using the Client-Side Model

Number of
Paper servers Application Deployment

PASIS [Goodson et al. 2004] n = 4 f + 1 Key-value datastore LAN
Loft [Hendricks et al. 2007] n = 3 f + 1 Key-value datastore LAN

BFT K/V store [Roeder and Schneider
2010]

n = 3 f + 1 Key-value datastore LAN

Depsky [Bessani et al. 2013] n = 3 f + 1 Key-value datastore WAN
PoWerStore [Dobre et al. 2013] n = 3 f + 1 Key-value datastore LAN, WAN

Phalanx [Malkhi and Reiter 1998b] n = 4 f + 1 Key management/CA system LAN
COCA [Zhou et al. 2002] n = 3 f + 1 Key management/CA system WAN

Data Acquisition, and is often used for monitoring critical infrastructures. The most
important element is the master server, which collects data about the status of the
infrastructure from remote equipment, processes that data, and provides the results
to a human-machine interface for visualization. BFT is used to replicate the master
server in an intrusion-tolerant manner. Replicas of the master server use the BFT
protocol to order messages coming from remote equipment.

All these applications are deployed on LAN. The UpRight Cluster Services [Clement
et al. 2009a] and the survivable SCADA system [Kirsch et al. 2014] benefit from
Aardvark and Prime, respectively, to guarantee high throughput or low latency even
while the system is under attack. Recovery mechanisms have been used to increase
the resiliency of BFT firewalls [Sousa et al. 2010; Roeder and Schneider 2010], at the
cost of 2k additional servers in the system (3 f + 2k + 1 servers in total).

7.2. Client-Side Applications

Table II reports some applications that use the client-side BFT model.
The client-side model has been used to implement applications like key-value data-

store systems [Hendricks et al. 2007; Roeder and Schneider 2010; Bessani et al. 2013;
Dobre et al. 2013] and key management/certificate authority systems [Malkhi and
Reiter 1998b; Zhou et al. 2002].

Client-side applications shift part of the job to the clients for performance optimiza-
tion, even if this may require additional servers in the system and specific protocols to
cope with malicious clients, as described in Section 5. As an example, PASIS [Goodson
et al. 2004] implements a BFT key-value datastore in which the clients propose new
updates and repair the system when they detect inconsistencies. PASIS combines era-
sure coding [Fragouli et al. 2006] and checksums to read and update fragments of data
blocks from and to the storage system, which is composed of 4 f + 1 servers. Repair
operations start when the fragments retrieved by a client are insufficient to recreate a
correct object. The client has to retrieve additional fragments and initiate a correction
process that ends when the object is completely repaired. The benefit of having clients
involved in the computation emerges when PASIS is compared with a data storage sys-
tem based on PBFT: PASIS shows higher throughput and lower latency as the number
of faulty servers (i.e., the value of f ) increases [Goodson et al. 2004], at the cost of f
additional servers in the system.

As with PASIS, Loft [Hendricks et al. 2007] also implements an erasure-encoded
Byzantine data storage. Loft supports multiwriter operations and defends against
malicious clients by following the same approach we illustrated in Figure 10, Section 5
[Liskov and Rodrigues 2006]. Loft is optimized for normal-case executions, in which
the number of failures and concurrent operations is low. Under these assumptions,
the update operation completes in two communication rounds and the read operation
completes in one communication round. The main difference with PASIS is that the
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Table III. Differences Between Server-Side and Client-Side Applications

Differences Server-side applications Client-side applications
Impact of malicious clients DoS attacks DoS and correctness attacks
Impact of malicious servers DoS attacks DoS attacks

Number of servers 3 f + 1 3 f + 1 or 4 f + 1
Protocol implementation Server-to-server communication Reduced server-to-server communication

Deployment strategy LAN LAN, WAN

object verification during a read operation is done locally by Loft servers, while in
PASIS the same operation is coordinated by clients and requires a higher number of
checksum computations.

Depsky [Bessani et al. 2013] is a set of protocols for data storage over multiple clouds.
These clouds are connected together to form a cloud of clouds in order to improve avail-
ability, integrity, and confidentiality of the data. Availability is achieved by replicating
data over distinct clouds; integrity is obtained by applying a BFT replication proto-
col within each cloud; confidentiality is achieved by combining secret sharing [Shamir
1979] with network coding [Fragouli et al. 2006], such that data is stored in encrypted
format. Moreover, Depsky separates data and metadata. This means that a client has
to perform two distinct system accesses to read/write data and metadata.

PoWerStore [Dobre et al. 2013] is a BFT data store that provides high availability
and strong consistency without sacrificing efficiency. Efficiency is achieved by replacing
signatures with computationally less expensive authenticators. System robustness is
obtained by using Proof of Writing (PoW) [Dobre et al. 2013], which is a two-round
procedure in which the second round is used to prove to a client that the first round of
the write operation has actually been completed. During the first round a client writes
data, while in the second round it writes metadata.

Phalanx [Malkhi and Reiter 1998b] is a BFT distributed coordination system built
on top of the consensus object emulation protocol [Malkhi and Reiter 1998c] described
in Section 5. Phalanx has been used as a distributed voting system. For this reason,
its baseline protocol [Malkhi and Reiter 1998c] has been extended to support atomic
operations [Lamport 1986]: reads and writes are linearizable [Herlihy and Wing 1990].
To this end, reading an object x from a quorum Q1 requires a write-back mechanism to
ensure that the value v of x with the highest time stamp t is stored at some quorum Q2.

COCA [Zhou et al. 2002] is a BFT certificate authority system. It is the first to
integrate threshold cryptography and proactive recovery in client-side systems. This
approach is extended with proactive obfuscation [Roeder and Schneider 2010] to build
a key-value datastore in which servers are less likely to have shared vulnerabilities.
A client writes a new certificate to a quorum of COCA servers. These servers use
threshold cryptography to sign replies to clients retrieving certificates. COCA uses
periodic proactive recovery at two distinct levels: (i) to refresh the shares of the key
used to sign replies to clients; and (ii) to rejuvenate servers from a clean execution
environment.

Unlike the server-side applications we analyzed, which are deployed on LAN, some
client-side applications described previously, such as Depsky, COCA, and PoWerStore
are deployed on WAN. The client-side model, in fact, reduces the server-to-server in-
teractions, such that client-side applications scale better than server-side applications
on WAN.

7.3. Differences Between Server-Side and Client-Side Applications

Table III highlights the differences between applications that use the server-side model
and applications that use the client-side model in terms of impact of malicious clients,
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impact of malicious servers, number of servers, protocol implementation, and deployment
strategy.

Impact of Malicious Clients
Server Side: In the server-side model, malicious clients cannot violate safety. Correct

clients, in fact, observe the operations executed by malicious clients in a consistent
order [Castro and Liskov 1999]. Malicious clients, however, can slow down the system
execution by launching performance attacks (e.g., by sending corrupted MACs to the
leader [Castro and Liskov 1999] or by sending too many requests to the system
[Clement et al. 2009b]).

Client Side: In the client-side model, malicious clients that act as proposers may
leave the system in an inconsistent state by sending different updates to different sets of
servers. Solutions to this problem require additional message rounds to guarantee that
the time stamp associated with an update is unique [Malkhi and Reiter 1998c; Liskov
and Rodrigues 2006]. Client-side protocols are also subject to performance attacks
launched by faulty clients. A malicious client that acts as proposer may fail to contact
a full quorum of servers, forcing some correct client to repair the system at a later
time. A malicious client that acts as repairer can also launch performance attacks,
by triggering continuous reconfigurations [Kotla et al. 2007] or introducing malicious
servers in the preferred replier set [Serafini et al. 2010].

Impact of Malicious Servers
Server Side: In the server-side model, if the number of malicious servers is no higher

than f , malicious servers cannot violate safety. However, malicious servers can slow
down the progress of the protocol by launching performance attacks like the Timeout
Manipulation and Pre-Prepare Delay attacks described in Section 4. Some of the server-
side BFT protocols [Amir et al. 2008; Clement et al. 2009b] take countermeasures to
avoid performance degradation while under attack.

Client Side: In the client-side model, if the number of malicious servers is no higher
than f , malicious servers cannot violate safety. Malicious servers can still launch
performance attacks. As an example, a malicious server can hold up-to-date objects
and provide stale objects to clients. However, because clients receive enough replies,
they can always obtain the most up-to-date values. Moreover, a malicious server may
delay the delivery of messages to clients, forcing correct clients to eventually repair the
system [Kotla et al. 2007; Serafini et al. 2010].

Number of Servers
Server Side: In the server-side applications we described, the number of servers is

3 f + 1, which provides optimal resiliency. 3 f + 2k+ 1 servers are used in the presence
of recovery operations [Sousa et al. 2010; Roeder and Schneider 2010].

Client Side: In the client-side applications we described the number of servers in the
system is either 3 f + 1 or 4 f + 1, depending on the specific protocol. Some [Roeder and
Schneider 2010; Zhou et al. 2002] achieve optimal resiliency (i.e., 3 f +1 servers), while
others [Goodson et al. 2004; Malkhi and Reiter 1998b] use 4 f +1 servers to improve the
performance of the system by completely removing server-to-server communication.

Protocol Implementation
Server Side: Server-side systems run an agreement protocol based on server-to-server

broadcast communications. Additional subprotocols are implemented to guarantee per-
formance under attack [Kirsch et al. 2014], improve resiliency through proactive re-
covery [Sousa et al. 2010; Roeder and Schneider 2010], and deal with pull-based client
request mechanisms [Zhao and Villaseca 2008; Kirsch et al. 2014].

Client Side: Unlike server-side protocols, in client-side protocols clients partici-
pate actively. They can act either as proposers, repairers, or both. Server-to-server or
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client-to-client communication is typically avoided, sometimes at the cost of having
more servers in the system [Malkhi and Reiter 1998b; Goodson et al. 2004].

Deployment Strategy
Server Side: The server-side systems we analyzed are deployed on LAN. PBFT

achieves good performance under normal operations, while Prime and Aardvark
achieve good performance even while under attack.

Client Side: Some client-side applications, such as PoWerStore, Depsky, and COCA,
are deployed on WAN. Because server-to-server interaction is reduced, the impact
of wide-area links on the performance is lower, compared with server-side systems
deployed on WAN.

8. SERVER-SIDE VERSUS CLIENT-SIDE: TRADE-OFFS

In this section, we describe some trade-offs that the analyzed BFT protocols present.
In Sections 8.1 and 8.2, we describe how an existing reference server-side or client-side
application chose these trade-offs, while in Section 8.3 we discuss how other existing
server-side or client-side applications chose the trade-offs.

Trade-off 1: Optimal resiliency versus reducing the number of communication
rounds
Prior work [Pease et al. 1980] proved that the BFT problem is solvable if the number of
processors n is greater than or equal to 3 f +1. n = 3 f +1 represents optimal resiliency,
that is, solving the BFT problem with the minimum number of processors required.
Some BFT protocols described in the previous sections trade optimal resiliency for
performance: they use more servers (e.g., n ≥ 4 f + 1, n ≥ 5 f + 1) to reduce the number
of communication rounds of the BFT protocol. This reduces the delay before the client
obtains a reply, especially in the presence of high-latency links.

Trade-off 2: Asymmetric authentication versus symmetric authentication
Asymmetric authentication is obtained through digital signatures. Clients and servers
have a private key that they use to sign messages. Digital signatures guarantee (with
high probability) that signed messages are unforgeable. However, digital signatures
represent the main performance bottleneck for many BFT protocols, such as PBFT.
As an alternative, symmetric authentication can be obtained through MACs. Each
server shares a key with every other server. A message signed by a server carries a
vector of MACs, one for each recipient server. Moreover, a server also shares a key with
each client. MACs are computationally less expensive than signatures, but they are
not able to prove to a third party that a message is authentic. PBFT uses asymmetric
authentication, but also proposes a variant that uses symmetric authentication. In this
variant, digital signatures are still used to sign view-change messages, while MACs are
used to authenticate all other messages. While this increases the performance of the
BFT protocol under normal operations, a malicious client can still force view changes
continuously by sending messages with malformed MACs in order to slow down the
progress of the system. This problem can be avoided by requiring clients to sign the
messages they send [Garcia et al. 2013].

Trade-off 3: Strong synchronization versus weak synchronization
BFT protocols that follow the server-side model impose strong synchronization among
correct servers: a correct server moves forward only when it collects 2 f + 1 messages
that say the same thing. On the contrary, BFT protocols that follow the client-side model
reduce (and, in some cases, remove completely) synchronization among servers. Server-
to-server interaction can be used to propagate updates in the presence of malicious
clients [Malkhi and Reiter 1998a] or for system reconfiguration [Serafini et al. 2010].
This approach scales better than the server-side model on WAN (a system that imple-
ments the server-side model makes progress as fast as the f + 1th slowest server/link).
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Trade-off 4: Performance guarantees under attack versus reducing protocol
overhead/system configuration
Performance guarantees under attack are desirable, especially for critical applications
[Kirsch et al. 2014], but they add some overhead to the BFT protocol or require specific
system configurations. Prime [Amir et al. 2008] extends PBFT with subprotocols that
monitor the behavior of the leader. These subprotocols introduce some overhead to the
computation but they are necessary to evict a leader that is performing too slowly
and to settle on a correct and fast leader that guarantees that clients’ operations are
executed within a bounded delay. Aardvark [Clement et al. 2009b] ensures constant
throughput even while under attack. To do so, distinct network interface controllers
and wires are used to connect each pair of servers. The system size is limited by the
number of network interface controllers available and the addition/removal of a server
requires manual reconfiguration.

Trade-off 5: Proactive recovery: Correctness versus correctness and contin-
uous availability
Proactive recovery [Roeder and Schneider 2010] is a technique that periodically reju-
venates servers from a clean execution environment in order to increase the resiliency
of the system over its lifetime. However, while this technique guarantees system cor-
rectness, it does not necessarily guarantee continuous availability. If a correct server
rejuvenates and another f servers fails concurrently, the system may halt until the
correct server completes rejuvenation. Continuous availability in the presence of reju-
venations comes at the cost of 2k additional servers in the system [Sousa et al. 2010;
Platania et al. 2014].

8.1. How a Server-Side Application Chose Trade-offs

We now select one of the server-side applications presented in Section 7.1 and de-
scribe how this application chose the trade-offs discussed previously. The server-side
application we select is the survivable SCADA system [Kirsch et al. 2014], which was
integrated into the Siemens corporation commercial SCADA product for the power
grid.

The survivable SCADA system uses the Prime BFT protocol to replicate the master
server, which is the most important element of the system. The replicated master
is connected to Remote Terminal Units (RTUs), which are the clients of the system.
Periodically, the replicated master pulls information about remote equipment from the
RTUs. Replicas of the master server use Prime to agree on the order in which this
information has to be processed, in order to assess the status of the power grid.

Optimal Resiliency versus Reducing the Number of Communication Rounds. The
survivable SCADA system chose optimal resiliency (n = 3 f + 1). The algorithm is
composed of a preordering phase, in which the servers exchange preliminary informa-
tion about client updates, and an ordering phase, which implements the pre-prepare,
prepare, commit pattern of PBFT. No optimization is used to reduce the number of
communication rounds.

Asymmetric Authentication versus Symmetric Authentication. The SCADA system
uses asymmetric authentication. All the messages exchanged among replicas of the
master server and between clients (i.e., RTUs) and the replicated master are digitally
signed.

Strong Synchronization versus Weak Synchronization. Prime implements state ma-
chine replication and imposes strong synchronization among correct servers. The repli-
cated SCADA master is deployed on LAN, while RTUs can be deployed on different
geographic locations and can be connected to the replicated master through WAN links.
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Performance Guarantees under Attack versus Reducing protocol Overhead/System
Configuration. Prime servers run a background protocol that monitors the activity of
the leader and a preordering phase to discover a malicious leader that may drop client
updates. When compared with PBFT, these subprotocols introduce some overhead in
the computation during normal operations. However, the two subprotocols are neces-
sary to limit the performance degradation that a malicious leader may cause. This
makes Prime more than one order of magnitude faster than PBFT while under attack
[Amir et al. 2008]. Guaranteeing good performance even in the presence of malicious
attacks is a desirable property of a SCADA system.

Proactive Recovery: Correctness versus Correctness and Continuous Availability. The
Prime protocol used to replicate the SCADA master [Kirsch et al. 2014] is an extension
of Prime 1.0 [Amir et al. 2008]. Prime 1.0 does not use any kind of recovery mechanism.
Prime 2.0 [Amir et al. 2014], a later iteration, supports proactive recovery and state
transfer [Platania et al. 2014]. A SCADA system built on top of Prime 2.0 could achieve
correctness and continuous availability at the cost of 2k additional servers.

The survivable SCADA system is strongly oriented to security and performance
under attack, which are desirable properties of critical infrastructures like power
grids. Regarding security, clients and servers sign all the messages they send. More-
over, Prime uses threshold cryptography [Shamir 1979; Blakley 1979] during the view
change algorithm to unambiguously define a list of servers that should be contacted
by all other servers to collect the Prime ephemeral state (e.g., the committed client
updates). Regarding performance under attack, Prime introduces subprotocols that
discover and replace a slow (and potentially malicious) leader. To achieve strong secu-
rity and performance guarantees under attack, Prime gives up performance improve-
ments under normal executions: Prime does not provide any mechanism to speed up
the system in the normal case (e.g., no fast agreement, use of authenticators, loose
synchronization among servers).

8.2. How a Client-Side Application Chose Trade-offs

The client-side application we select is COCA [Zhou et al. 2002], an online certification
authority developed at Cornell University. The reason we choose COCA is that COCA
addresses all the trade-offs described in this section, including the implementation of
recovery techniques. This gives us the opportunity to describe practical aspects related
to recovery mechanisms in real-world applications. COCA issues digitally signed cer-
tificates to associate a name (e.g., website) with a public key, and provides a means for
clients to validate certificates.

COCA clients use an Update protocol similar to the write operation depicted in
Figure 13 to store/update a certificate. Moreover, COCA uses a threshold cryptography
mechanism to sign replies to clients and generate proofs of new certificates to servers
in a quorum. COCA combines a client-side protocol, secret sharing, and proactive
recovery. Periodically, servers are rejuvenated from a clean execution environment and
the shares of the service’s private key are refreshed.

Optimal Resiliency versus Reducing the Number of Communication Rounds. COCA
chose optimal resiliency (n = 3 f +1). A client sends a request to f +1 delegate servers.
Each delegate manages a quorum of 2 f + 1 servers to execute that request and build
a reply message. In addition, each delegate server runs a threshold signature protocol
to sign the reply message to the client in cooperation with another f server.

Asymmetric Authentication versus Symmetric Authentication. COCA uses asymmet-
ric authentication. Clients and servers sign all messages they send. As described
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previously, threshold cryptography is used to sign replies to clients and generate proofs
of new certificates to servers in a quorum.

Strong Synchronization versus Weak Synchronization. COCA reduces synchroniza-
tion among servers and is suitable for deployment on LAN and WAN. However, some
correct servers may store stale certificates because client requests are executed only by
quorums of servers. Finally, it is important to note that, despite loose synchronization
introduced by the BFT protocol, COCA uses threshold cryptography. The experimental
evaluation shows that the threshold cryptography protocol has the largest impact on
the performance of the system (on WAN it is second only to network delays) [Zhou et al.
2002].

Performance Guarantees under Attack versus Reducing Protocol Overhead/System
Configuration. COCA does not explicitly define performance guarantees under attack,
but part of the system is devoted to protecting against DoS attacks that may dramati-
cally slow down the progress of the system. Most of the protocol’s cost and complexity
is concerned with defending against these attacks.

Proactive Recovery: Correctness versus Correctness and Continuous Availability.
COCA uses two distinct forms of recovery to increase the resiliency of the system:

—Proactive secret sharing recovery: periodically, servers run an update protocol to
refresh the shares of the service’s private key used to generate partial signatures.

—Proactive server recovery: periodically, one server at a time is rejuvenated to clean
that machine from potential intrusions.

COCA does not uses 2k additional servers in the presence of proactive recovery. This
means that COCA is correct but not necessarily always available during its execution.
A quorum in COCA is composed of 2 f +1 servers. If f servers are malicious and nonco-
operative while a correct server rejuvenates, the system will halt until the rejuvenated
server completes recovery operations.

Because of the design choices made, COCA is a system that offers optimal resiliency
and scales well on LAN and WAN. The use of digital signatures regulates the access
of clients to the system and prevents malicious servers from fabricating certificates. In
addition, proactive secret sharing recovery and proactive server recovery improve the
resiliency of the system over its lifetime. COCA can tolerate any number of malicious
servers, provided that no more than f failures occur within a window of vulnerability
[Zhou et al. 2002]:

‘‘Each window of vulnerability at a COCA server begins when that server
starts executing the proactive recovery protocols and terminates when that
server has again started and finished those protocols.’’

8.3. How Other Applications Chose Trade-offs

Table IV shows how other server-side and client-side applications presented in Section 7
chose trade-offs. Each row of the table includes only the systems for which that specific
trade-off is meaningful.

All server-side applications chose optimal resiliency over reducing the number of
communication rounds. Applications that use recovery techniques [Sousa et al. 2010;
Roeder and Schneider 2010] use 3 f +2k+1 servers (see later). Although the client-side
model presents many optimizations to reduce the number of communication rounds,
only PASIS [Goodson et al. 2004] and Phalanx [Malkhi and Reiter 1998b] give up
optimal resiliency for better performance. In contrast to other client-side applications,
which use 3 f + 1 servers, PASIS and Phalanx use 4 f + 1 servers and eliminate any
server-to-server interaction. As an example, the PASIS experimental evaluation shows
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Table IV. Trade-offs Chosen by Other Server-Side or Client-Side Applications

Trade-off 1 Server-side systems Client-side systems
Optimal resiliency Byzantine NFS [Castro and Liskov

2002], FARSITE [Adya et al. 2002],
BFT SCADA [Zhao and Villaseca
2008], UpRight [Clement et al. 2009a],
Firewall for SIEMs [Garcia et al. 2013],
Survivable SCADA [Kirsch et al. 2014]

COCA [Zhou et al. 2002], Loft
[Hendricks et al. 2007], BFT K/V store
[Roeder and Schneider 2010], Depsky
[Bessani et al. 2013], PoWerStore
[Dobre et al. 2013]

Reducing the number
of communication

None Phalanx [Malkhi and Reiter 1998b],
PASIS [Goodson et al. 2004]

Trade-off 2 Server-side systems Client-side systems
Asymmetric
authentication

FARSITE [Adya et al. 2002], BFT
firewall [Roeder and Schneider 2010],
Firewall for SIEMs [Garcia et al. 2013],
Survivable SCADA [Kirsch et al. 2014]

Phalanx [Malkhi and Reiter 1998b],
COCA [Zhou et al. 2002], BFT K/V
store [Roeder and Schneider 2010],
Depsky [Bessani et al. 2013]

Symmetric
authentication

Byzantine NFS [Castro and Liskov
2002], BFT SCADA [Zhao and
Villaseca 2008], UpRight [Clement
et al. 2009a], CIS firewall [Sousa et al.
2010], Firewall for SIEMs [Garcia
et al. 2013]

PASIS [Goodson et al. 2004], Loft
[Hendricks et al. 2007], PoWerStore
[Dobre et al. 2013]

Trade-off 3 Server-side systems Client-side systems
Strong
synchronization

Byzantine NFS [Castro and Liskov
2002], FARSITE [Adya et al. 2002],
BFT SCADA [Zhao and Villaseca
2008], UpRight [Clement et al. 2009a],
CIS firewall [Sousa et al. 2010], BFT
firewall [Roeder and Schneider 2010],
Firewall for SIEMs [Garcia et al. 2013],
Survivable SCADA [Kirsch et al. 2014]

None

Weak synchronization None Phalanx [Malkhi and Reiter 1998b],
COCA [Zhou et al. 2002], PASIS
[Goodson et al. 2004], Loft [Hendricks
et al. 2007], BFT K/V store [Roeder and
Schneider 2010], Depsky [Bessani et al.
2013], PoWerStore [Dobre et al. 2013]

Trade-off 4 Server-side systems Client-side systems
Performance
guarantees under
attack

UpRight [Clement et al. 2009a],
Survivable SCADA [Kirsch et al. 2014]

None

Reducing protocol
overhead/system
configuration

Byzantine NFS [Castro and Liskov
2002], FARSITE [Adya et al. 2002],
BFT SCADA [Zhao and Villaseca
2008], CIS firewall [Sousa et al. 2010],
Firewall for SIEMs [Garcia et al. 2013]

Phalanx [Malkhi and Reiter 1998b],
COCA [Zhou et al. 2002], PASIS
[Goodson et al. 2004], Loft [Hendricks
et al. 2007], BFT firewall [Roeder and
Schneider 2010], BFT K/V store
[Roeder and Schneider 2010], Depsky
[Bessani et al. 2013], PoWerStore
[Dobre et al. 2013]

Trade-off 5 Server-side systems Client-side systems
Proactive recovery:
Only correctness

None COCA [Zhou et al. 2002]

Proactive recovery:
Correctness and
continuous
availability

CIS firewall [Sousa et al. 2010], BFT
firewall [Roeder and Schneider 2010]

None

ACM Computing Surveys, Vol. 48, No. 4, Article 61, Publication date: March 2016.



On Choosing Server- or Client-Side Solutions for BFT 61:25

how this choice allows PASIS to outperform PBFT in terms of latency and throughput
[Goodson et al. 2004].

Regarding authentication, the applications we consider are split almost evenly be-
tween using digital signatures (asymmetric authentication) and MACs (symmetric
authentication). Interestingly, this choice does not depend on the adopted system model
(server side or client side). Applications that use MACs to authenticate messages seek
to maximize performance during normal operations. However, some of these applica-
tions still use signatures for some critical message. As an example, the Byzantine NFS
[Castro and Liskov 2002] uses private/public key cryptography to exchange the sym-
metric keys that are used to authenticate all other messages. The firewall for SIEMs
[Garcia et al. 2013] uses both signatures and authenticators. The system is composed
of prefilters and filters. Each message is signed with the private key of the sender. In
addition, the sender attaches a vector of MACs to each message, which is computed
over the message payload and signature. MACs represent an optimization to speed
up the message verification. Prefilters drop messages with invalid MACs, while all
other messages are forwarded to filters through a total order multicast channel. Fil-
ters check the authenticity of the received messages by verifying the signature of the
sender. This second step is necessary because a malicious prefilter could alter the MAC
vector computed by the original sender or invent new messages.

In contrast, the choice between strong and weak synchronization is strongly tied to
the adopted system model. Server-side applications rely on server-to-server broadcast
communications and require each (correct) server to process each request. The client-
side applications we described in Section 7 rely on the clients to coordinate the ordering
round of the BFT protocol. The lack of server-to-server interaction makes these appli-
cations scale better than client-side systems on WAN. The UpRight services deserve
particular mention: although they rely on fast ordering and separate agreement from
execution [Yin et al. 2003], correct execution servers still have to receive ordered re-
quests from a quorum of order servers. Moreover, possible conflicts are resolved during
the state checkpointing process, which requires additional communication between
execution and order servers.

Performance guarantees under attack are an important requirement for practical
applications. However, only the survivable SCADA system [Kirsch et al. 2014] and
the UpRight versions of Zookeeper and the Hadoop file system [Clement et al. 2009a]
offer these guarantees. At the heart of these solutions lie Prime [Amir et al. 2008] and
Aardvark [Clement et al. 2009b], respectively. Prime extends the PBFT protocol with
subprotocols that monitor the activity of the leader to guarantee performance in terms
of latency. Aardvark uses resource isolation, regular view changes, and a prefiltering
mechanism to ensure constant throughput. Performance guarantees under attack are
obtained at the cost of higher overhead during normal operations when compared
with other approaches. The majority of the BFT applications we discussed throughout
the article are not willing to pay this cost. They focus instead on how to improve
performance in the normal case.

Finally, the ability to automatically recover system servers is another key aspect for
the implementation of practical, real-world applications. As with performance under
attack, only a few systems use recovery mechanisms, namely, COCA [Zhou et al. 2002],
CIS firewall [Sousa et al. 2010], and BFT firewall [Roeder and Schneider 2010]. Sur-
prisingly, none of the applications that provide performance guarantees under attack
implement recovery strategies and, vice versa, applications that implement recovery
mechanisms do not provide any kind of performance guarantee under attack. CIS and
BFT firewalls implement proactive recovery algorithms and use 3 f +2k+1 servers in or-
der to guarantee correctness and continuous availability even during the rejuvenation
of correct servers. The CIS firewall also implements a reactive recovery mechanism that
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triggers the rejuvenation of a compromised server when a failure of that server is de-
tected. On the contrary, COCA implements proactive recovery but uses only 3 f + 1
servers. Hence, COCA guarantees correctness but not necessarily continuous availabil-
ity. The system halts if f out of 2 f + 1 servers are compromised and noncooperative,
and a correct server is rejuvenating.

9. BUILDING A BFT APPLICATION: LESSONS LEARNED

In this section, we describe the main aspects that a system builder should consider for
building a BFT application, based on the lessons learned in this article.

The first thing to consider is the system model, server side or client side. The choice
depends strictly on the requirements of the application that the system builder wants
to build. If the application needs a resilient agreement protocol to establish the order
in which operations from multiple clients have to be executed, the server-side model
is more appropriate. An example of such an application is the survivable SCADA
system [Kirsch et al. 2014], which is integrated with a real Siemens SCADA product.
Replicas of the SCADA master use Prime to order operations coming from RTUs.
Prime implements state machine replication and guarantees that client operations are
executed in the same order by all correct servers, and thus, that all correct servers
are consistent. On the contrary, for applications in which a resource is updated by a
single client or a few clients, the client-side model is more appropriate. An example
of such an application is Phalanx [Malkhi and Reiter 1998b], which was part of a
voting system for elections in Costa Rica. Phalanx implements a client-side protocol
with single-writer, write once semantics in order to avoid multiple votes from the same
person. Due to its favorable scalability properties, the client-side model is appealing for
building geodistributed applications. However, unlike the server-side model, in which
server-to-server communication helps detect conflicting updates from malicious clients,
a system builder that wants to follow the client-side model should consider clients part
of the system and provide the system itself with mechanisms that handle malicious
clients.

Another important aspect to consider when building a BFT application is the behav-
ior of that application under attack. Guaranteeing performance while the system is
under malicious attack is a fundamental requirement of real-world applications. Cur-
rently, only a few solutions focus on this. Prime enforces latency guarantees by monitor-
ing the activity of the leader, in order to replace a leader that performs too slowly and
could potentially be malicious. Aardvark and COCA enforce constant throughput guar-
antees under attack through authorization mechanisms, resource management (i.e.,
different input queues to store messages coming from different clients and servers),
and caching reply messages in order to avoid costly cryptographic operations in case of
multiple requests of the same operation from malicious clients. While these protocols
provide latency or throughput guarantees, the large gap in the current BFT literature
is the absence of protocols able to provide latency and throughput guarantees while
under attack. Combining solutions like Prime, Aardvark, and COCA, when possible,
would allow a distributed system to tolerate a broader class of attacks, while still
providing good performance even in the presence of a malicious adversary.

Another practical aspect to consider is how to make an application survivable over
a long period of time. Modern systems are expected to operate for years (e.g., critical
infrastructures). The vast majority of BFT protocols in the literature guarantee correct
behavior if no more than f servers are compromised over the system lifetime but
they do not adopt diversity or recovery mechanisms, which makes it hard to support
the previous assumption in case of long-lived systems. In addition, current solutions
either address performance guarantees under attack, or provide recovery mechanisms
to increase the resiliency of the system. These aspects are considered together for the
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first time in Prime 2.0 [Amir et al. 2014; Platania et al. 2014], which integrates the
Prime replication engine, fine-grained software diversity [Cohen 1993; Giuffrida et al.
2012; Pappas et al. 2012] obtained at compile time [Homescu et al. 2013], and proactive
recovery [Roeder and Schneider 2010]. Servers are periodically rejuvenated from a
clean execution environment and application state. After each rejuvenation, a new
variant of a Prime server is automatically generated with a MultiCompiler [Homescu
et al. 2013] that guarantees, with high probability, that any two variants are different
from each other. In this way, similar to COCA, a BFT protocol can tolerate any number
of failures during the system lifetime, provided that no more than f failures occur
within a vulnerability window. Guaranteeing continuous availability in the presence
of recovery mechanisms requires 2k additional servers in the system [Sousa et al.
2010], where k is the number of servers that rejuvenate at the same time. Trading
optimal resiliency for continuous availability is important for critical systems, in order
to continue working even in the presence of f concurrent failures and the rejuvenation
of k correct servers. Reducing the number of physical servers used in the system is a
problem that can be addressed through modern virtualization technologies.

The last, but not least, aspect a system builder should consider for building a BFT
application is the authentication mechanism, that is, digital signatures or MACs. In the
previous section, we learned that BFT applications split almost evenly between these
two approaches. MACs are computationally less expensive than signatures, which
make them appealing for improving the performance of the system. However, this
improvement is obtainable only during normal conditions: a malicious client can force
view changes or system reconfigurations in order to slow down the progress of the
protocol by sending correct authenticators to only a subset of servers. MACs do not
protect against this kind of attack, nor do they provide nonrepudiation. To overcome
these limitations, digital signatures are required. Improved performance, while still
providing high security, can be achieved in two different ways:

—Developing flexible applications that can benefit from modern multicore technologies.
In this way, several consensus instances can run in parallel [Behl et al. 2014] or one
or more cores could be dedicated to specific subtasks [Schmidt and Suda 1993], such
as cryptographic operations, as also suggested by previous work [Abd-El-Malek et al.
2005].

—Using a hybrid approach, similar to the PBFT variant in which MACs are used
to authenticate server-to-server messages during normal case operations and signa-
tures are used to authenticate some specific messages, such as view change messages
and client updates (note that this PBFT extension uses MACs to authenticate client
updates).

Guaranteeing performance under attack, improving resiliency through recovery
mechanisms, and increasing security using asymmetric authentication come at the
cost of lower performance during normal operations. However, independent of the
adopted system model, those approaches are necessary to build applications that are
truly usable in intrusion-prone environments.

10. CONCLUSION

In the last 20 years, a large number of BFT protocols have been presented, which
differ from each other in many aspects. In this article, we classified BFT protocols
based on their system model, that is, server side versus client side. We described
server-side protocols as those in which the execution is entirely run by servers, and
client-side protocols as those in which clients act either as proposers, repairers, or
both. We argued that in the client-side model clients should be considered part of the
system and, hence, mechanisms that cope with potentially malicious clients should be
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provided. In addition to security aspects, we showed that shifting part of the job to the
client side makes applications more scalable on WANs. We described some applications
that use the BFT server-side or client-side model, highlighting differences and trade-
offs. Finally, we presented some current research gaps in the literature of BFT protocols
and discussed the main aspects that a system builder should consider when building
practical BFT applications.
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